
© 2020 Arm Limited

John Linford <john.linford@arm.com>
24 August 2020

Performance Engineering
with MVAPICH2 and Arm’s
Scalable Vector Extension

2 © 2020 Arm Limited

Schedule
https://gitlab.com/arm-hpc/training/mug20

• [5] Introduction to Arm in HPC
• Training cluster coordinates
• MVAPICH2 quick start

• [30] Arm Allinea Studio and Arm Forge
• DDT Debugger
• MAP Profiler
• Forge Remote connect
• Hands-on demo

• [20] SVE Introduction
• Vector length agnostic (VLA) programming
• Tools and approaches for programming SVE

• [2] Summary

Download slides and
hands-on materials

here!

https://gitlab.com/arm-hpc/training/mug20

3 © 2020 Arm Limited

Cluster access and hands-on materials
gitlab.arm-hpc.org/training/mug20

Accessing the Cluster

• ssh student@cluster.arm-hpc.org
• Password: Tr@ining!

• A private AWS Graviton 2 instance with all the
necessary software installed and configured will
be allocated for you.

• Introductory hands-on materials are in $HOME.
• Instructions on how to connect to your AWS

instance via Forge Remote Client are given when
you log in.

4 © 2020 Arm Limited

MVAPICH2 on AWS Graviton 2 Quick Start
• module load Neoverse-N1/RHEL/7/gcc-9.3.0/mvapich2/2.3.4

or, to use MVAPICH2 with Arm Compiler

module load Neoverse-N1/RHEL/7/arm-linux-compiler-20.2/mvapich2/2.3.4

• module load Generic-AArch64/RHEL/7/forge/20.1
• module load Generic-AArch64/RHEL/7/arm-instruction-emulator/20.0

• See “Slides” folder or “README” files for instructions
• Hands-on code examples:

• 01_Compiler
• 02_Forge
• 03_ArmIE
• 04_ACLE

5 © 2020 Arm Limited

Install Arm Forge Remote Client
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

• Go to the Arm Forge download page
• Linux:

• Use the full Arm Forge installation package
• For Ubuntu 19.04 and later, also install

libncurses5 and libtinfo5

• Windows and macOS:
• Navigate to the bottom of the page and use the

appropriate link

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

© 2020 Arm Limited

Arm in HPC

7 © 2020 Arm Limited

Arm Neoverse Momentum in Servers & HPC
2018

2019

2020

Marvell's ThunderX2 Solution
for Microsoft Azure Development

VMware demonstrated
ESXi on 64-bit ARM

Huawei released Kunpeng 920 CPU
and TaiShan server platform

Arm Neoverse Announced

Fujitsu Fugaku Riken
#1 on Top500

EPI Zeus License

Marvell Announced 96-
core ThunderX3 Server SoC

AWS announced 2nd Generation
Arm-based Graviton2 Server CPU

Ampere announced industry’s
1st 80-Core Server SoC (128 Altra Max)

Neoverse N1 & E1
Platform announced

Nvidia CUDA stack to
Arm Platforms

Silicon
Suppliers

Marvell, Fujitsu,
Mellanox, NVIDIA, …

OEM/ODM’s
Cray-HPE, ATOS-Bull,
Fujitsu, Gigabyte, …

Cluster M
anagem

ent
Bright, HPE CM

U
, xCat, W

arew
ulf, …

OS
RHEL, SUSE, CentOS, Ubuntu, …

Arm Server Ready Platform
Standard firmware and RAS

Applications
Open-source, owned, commercial ISV codes, …

Schedulers
SLU

RM
, IBM

 LSF, Altair PBS Pro, …Libraries
ArmPL, FFTW, OpenBLAS,

NumPy, SciPy, Trilinos, PETSc,
Hypre, SuperLU, ScaLAPACK, …

Debuggers &
Profilers

Arm Forge (DDT, MAP),
Rogue Wave, HPC Toolkit,
Scalasca, Vampir, TAU, …

Filesystems
BeeGFS, Lustre, ZFS,

HDF5, NetCDF, …

Middleware
Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI

Compilers
Arm, GNU, LLVM, Clang, Flang,

Cray, PGI/NVIDIA, Fujitsu, …

Containers, Interpreters, etc.
Singularity, PodMan, Docker, Python, …

A Rich and Growing
Application Ecosystem

GROMACS LAMMPS CESM2 MrBayes Bowtie DeepBench

NAMD TensorFlow ParaView SIESTA UM AMBER

WRF Quantum
ESPRESSO VASP Torch MILC GEANT4

OpenFOAM GAMESS Mahout VisIt DL-Poly NEMO

Weka BLAST NWCHEM Abinit BWA QMCPACK

Chem/Phys Weather CFD Visualization Genomics AI/ML

10 © 2020 Arm Limited10 © 2020 Arm Limited

Fujitsu’s Fugaku: Fastest Supercomputer in the World

12 © 2020 Arm Limited12 © 2020 Arm Limited

Vanguard Astra by HPE
• 2,592 HPE Apollo 70 compute nodes

• 5,184 CPUs, 145,152 cores, 2.3 PFLOPs (peak)

• Marvell ThunderX2 ARM SoC, 28 core, 2.0 GHz

• Memory per node: 128 GB (16 x 8 GB DR
DIMMs)
• Aggregate capacity: 332 TB, 885 TB/s (peak)

• Mellanox IB EDR, ConnectX-5
• 112 36-port edges, 3 648-port spine

switches

• Red Hat RHEL for Arm
• HPE Apollo 4520 All–flash Lustre storage

• Storage Capacity: 403 TB (usable)
• Storage Bandwidth: 244 GB/s

13 © Arm 2020

AWS Graviton 2 - an Arm Server Processor

First Arm-based processor
available in major cloud

Up to 16 vCPUs, 10Gbps
enhanced networking, 3.5Gbps
EBS bandwidth

Built on 64-bit Arm Neoverse cores
with AWS-designed silicon using
16nm manufacturing technology

Graviton Processor

Built with 64-bit Arm Neoverse
cores with AWS-designed silicon
using 7nm manufacturing
technology

Up to 64 vCPUs, 25Gbps
enhanced networking, 18Gbps
EBS bandwidth

7x performance, 4x compute cores,
and 5x faster memory

Graviton 2 Processor

14 © 2020 Arm Limited

AWS Graviton 2 for HPC workloads
The c6g instances have outstanding price/performance as compared to similar x86 instances

• The AWS Graviton 2 implements the Arm Neoverse N1
• Up to 40% improved price/performance over x86 instances

Cost: lower is better Run time: lower is better

Performance
Engineering

Methodology and Tools

16 © 2020 Arm Limited

Identifying and resolving performance issues

No

No

Profile Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

Compute

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

-50x

-10x

-10x

-5x

Communication

17 © 2020 Arm Limited

Arm Performance Engineering Tools Ecosystem
See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

18 © 2020 Arm Limited

Arm Allinea Studio: HPC Development Solutions from Arm
Commercially supported tools for HPC developers

Code Generation
for Arm servers

Performance Engineering
for any architecture, at any scale

Commercially Supported Toolkit
for applications development on Linux

• C/C++ Compiler for Linux
• Fortran Compiler for Linux
• Performance Libraries
• Performance Reports
• Debugger
• Profiler

Reporting

Profiler

Debugger

Server & HPC Solution
for Arm servers

COMPILER
FOR LINUX

PERFORMANCE LIBRARIES

C/C++ COMPILER

FORTRAN COMPILER

19 © 2020 Arm Limited

Arm Forge = DDT + MAP + Performance Reports
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory

debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

20 © 2020 Arm Limited

Arm Forge – DDT Parallel Debugger
Switch between

MPI ranks and
OpenMP threads

Display pending
communications

Visualize data structures

Export data and
connect to
continuous
integration

Analyze memory usage

21 © 2020 Arm Limited

Arm DDT Feature Details

• Scalable debugging of threaded codes (with OpenMP or pthreads)
• Support for asynchronous thread control

• GPU debugging
• Memory debugging: error detection, OOB detection (guard pages), leak detection
• Single or multiple Linux corefiles.

• Core files are well supported on aarch64,
• Can selectively dump core memory from specified processes or threads.
• Standard core files as generated by all major Linux distributions. Lightweight core files not supported.

• Scalable launch via many vendor specific launch infrastructures, e.g. PMIx or MPIR

22 © 2020 Arm Limited

DDT: Production-scale debugging
Isolate and investigate faults at scale

• Which MPI rank misbehaved?
• Merge stacks from processes and threads
• Sparklines comparing data across processes

• What source locations are related to the problem?
• Integrated source code editor
• Dynamic data structure visualization

• How did it happen?
• Parse diagnostic messages
• Trace variables through execution

• Why did it happen?
• Unique “Smart Highlighting”
• Experiment with variable values

23 © 2020 Arm Limited

Memory Debugging Menu in Arm DDT

When manual linking is used,
untick “Preload” box

MVAPICH2 Compatibility Hint
Set the environment variable MV2_ON_DEMAND_THRESHOLD
to the maximum job size you expect. This setting should not be
a system wide default; it should be set as needed.

24 © 2020 Arm Limited

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs.

• You can run the debugger in non-interactive mode
• For long-running jobs
• For automated testing, continuous integration…

• To do so, use the following arguments:
• $ ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe

• --offline enable non-interactive debugging
• --output specifies the name and output of the non-interactive debugging session

• Html
• Txt

• Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \
--trace-at _jacobi.F90:83,residual \
srun ./jacobi_omp_mpi_gnu.exe

25 © 2020 Arm Limited

The Arm Forge GUI and where to run it
Forge includes a provide powerful GUI that can be run in a variety of configurations.

Ultimately, that’s where the tools will run.
But what about the GUI?

On the head node
(interactive mode + reverse connect)

On the compute node
(offline OR interactive mode)

Remote client
(remote launch + reverse

connect)

26 © 2020 Arm Limited

DDT somewhere over the Pacific at 41,000ft and 550MPH

27 © 2020 Arm Limited

Install Arm Forge Remote Client
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

• Go to the Arm Forge download page
• Linux:

• Use the full Arm Forge installation package
• For Ubuntu 19.04 and later, also install

libncurses5 and libtinfo5

• Windows and macOS:
• Navigate to the bottom of the page and use the

appropriate link

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

28 © 2020 Arm Limited

Launching the Forge Remote Client
The remote client is a stand-alone application that runs on your local system

• Open Forge Remote Client

• Create a new connection: Remote Launch è Configure è Add
• Hostname: <username>@<hostname>

–student0XX@cluster.arm-hpc.org
• Remote installation directory: </path/to/arm-forge/X.Y/>

–/opt/arm/forge/20.1

• Connect!

29 © 2020 Arm Limited

Remote connect

30 © 2020 Arm Limited

Arm MAP: Production-scale application profiling
Identify bottlenecks and rewrite code for better performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile mpirun –n 48 ./example

31 © 2020 Arm Limited

Arm MAP Overview
A lightweight sampling-based profiler for large scale jobs

Core Features

• MAP is a sampling based scalable profiler
• Built on same framework as DDT
• Parallel support for MPI, OpenMP
• Designed for C/C++/Fortran

• Designed for simple ‘hot-spot’ analysis
• Stack traces
• Augmented with performance metrics

• Lossy sampler
• Throws data away – 1,000 samples / process
• Low overhead, scalable and small file size

Performance Metrics

• Time classification
• Based on call stacks
• MPI, OpenMP, I/O, Synchronization

• Feature-specific metrics
• MPI call and message rates

– (P2P and collective bandwidth)
• I/O data rates (POSIX or Lustre)
• Energy data (IPMI or RAPL for Intel)

• Instruction information (hardware counters)
• x86 – instruction breakdown + PAPI
• aarch64 – perf metric for hardware counters

32 © 2020 Arm Limited

Hardware Performance Metrics on Arm
MAP uses perf or PAPI to gather data.

• On x86 MAP reports on instruction mix
• CPU, vectorization, memory, etc
• Arm are researching ways to provide the same

• Instruction activity via perf
• Harder to read / action
• Raw rates presented – not interpolated

33 © 2020 Arm Limited

Python Profiling
From 19.1

New support for
Python applications

• Native Python

• Cython Interpreter

• Called C/C++ code

34 © 2020 Arm Limited

Custom metrics interface

• MAP supports the development of user metrics
• We provide a custom metric interface

• API for safe calls to common functions

• Let’s you develop your own metrics of interest
• Link to application metrics (units / s, error values)
• Link to libraries (specialist communication or I/O)
• System metrics (custom energy monitors)

• Integrates directly into MAP and Performance Reports
• XML files for aggregation methods

• Need to consider overheads and thread safety

35 © 2020 Arm Limited

Arm Performance Reports
A high-level view of application performance with “plain English” insights

36 © 2020 Arm Limited

Arm Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report.

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency

System
usage

37 © 2020 Arm Limited

Arm Forge and MVAPICH2

• To use DDT’s memory debugging features, set the environment variable
MV2_ON_DEMAND_THRESHOLD to the maximum job size you expect. This setting
should not be a system wide default; it should be set as needed.

• To use mpirun_rsh with DDT, from File → Options go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add -
hostfile <hosts>, where <hosts> is the name of your hosts file, within the
mpirun_rsh arguments field in the Run window.

• To enable message Queue Support MVAPICH2 must be compiled with the flags
--enable-debug --enable-sharedlib. These are not set by default.

• MVAPICH2 MPI programs cannot be started using Express Launch syntax.
• Do use: “ddt ./a.out” and configure MPI launch parameters in the GUI.
• Don’t use: “ddt mpirun <mpi_args> ./a.out”

© 2020 Arm Limited

Hands-on demo

© 2020 Arm Limited

SVE: The Scalable
Vector Extension

40 © 2020 Arm Limited

• There is no preferred vector length
• The vector length (VL) is a hardware choice, 128-2048b, in increments of 128b
• A Vector Length Agnostic (VLA) programming adjusts dynamically to the available VL

• SVE addresses traditional barriers to auto-vectorization
• Software-managed speculative vectorization of uncounted loops
• Extract more data-level parallelism (DLP) from existing C/C++/Fortran source code

• SVE is a new approach to vectorization, not an iteration on existing ISAs (e.g. NEON)
• SVE is a separate, optional extension with a new set of instruction encodings
• Initial focus is HPC and general-purpose server, not media/image processing

What makes it a Scalable Vector Extension?

41 © 2020 Arm Limited

Vector Length Agnostic
programming model

VLA
Write once

Compile once

Vectorize more loops

42 © 2020 Arm Limited

SVE ISA does not mandate a single, fixed vector length
The vector length is LEN x 128-bit up to 2048

• There is no preferred vector length
• No need to recompile
• No need to rewrite hand-coded SVE assembler

or C intrinsics
• The programmer’s intent is expressed in the

binary è easier to optimize
• Predicate Registers indicate active vector lanes

…

VL

128b

0 64

256b

0 128

384b

0 128 256

128

256

384

2048b

0 128 1920 2048

43 © 2020 Arm Limited

SVE vs Traditional ISA
How do we compute data which has ten chunks of 8-bytes?

SVE (VLA vector engine)
q Three iterations over a 32-byte VLA register

with an adjustable predicate

Aarch64 (scalar)
q Ten iterations over an 8-byte register

NEON (128-bit vector engine)
q Four iterations over a 16-byte register + two

iterations of a drain loop over a 8-byte register

44 © 2020 Arm Limited

How can you program when the vector length is unknown?
SVE provides features to enable VLA programming from the assembly level and up

1 2 3 4
5 5 5 5
1 0 1 0

6 2 8 4

+

=
pred

Per-lane predication
Operations work on individual lanes under control of a
predicate register.

n-2
1 01 0CMPLT n

n-1 n n+1INDEX i
for (i = 0; i < n; ++i) Predicate-driven loop control and management

Eliminate scalar loop heads and tails by processing partial
vectors.

Vector partitioning & software-managed speculation
First Faulting Load instructions allow memory accesses to cross into
invalid pages.1 2 0 0

1 1 0 0
+

pred

1 2

45 © 2020 Arm Limited

How do you count by vector width?

ld1w z1.s, p0/z, [x0,x4,lsl 2] // p0:z1=x[i]
ld1w z2.s, p0/z, [x1,x4,lsl 2] // p0:z2=y[i]
fmla z2.s, p0/m, z1.s, z0.s // p0?z2+=x[i]*a
st1w z2.s, p0, [x1,x4,lsl 2] // p0?y[i]=z2

incw x4 // i+=(VL/32)

No need for multi-versioning: one increment to rule all vector sizes

“Increment x4 by the number of 32-bit lanes (w) that fit in a VL.”

46 © 2020 Arm Limited

Initialization when vector length is unknown
• Vectors cannot be initialized from compile-time constant, so…

• INDEX Zd.S,#1,#4 : Zd = [1, 5, 9, 13, 17, 21, 25, 29]

• Predicates cannot be initialized from memory, so…
• PTRUE Pd.S, MUL3 : Pd = [T, T, T , T, T, T , F, F]

• Vector loop increment and trip count are unknown at compile-time, so…
• INCD Xi : increment scalar Xi by # of 64b dwords in vector
• WHILELT Pd.D,Xi,Xe : next iteration predicate Pd = [while i++ < e]

• Vectors stores to stack must be dynamically allocated and indexed, so…
• ADDVL SP,SP,#-4 : decrement stack pointer by (4*VL)
• STR Zi, [SP,#3,MUL VL] : store vector Z1 to address (SP+3*VL)

47 © 2020 Arm Limited

Scalable vector registers

• Z0-Z31 extending NEON’s 128-bit V0-V31.

• Packed DP, SP & HP floating-point elements.

• Packed 64, 32, 16 & 8-bit integer elements.

Scalable predicate registers

• P0-P15 predicates for loop / arithmetic
control.

• 1/8th size of SVE registers (1 bit / byte).

• FFR first fault register for software
speculation.

SVE Registers
Layout

48 © 2020 Arm Limited

Predicates: Active Lanes vs Inactive Lanes

• 16 predicate registers (P0-P15)
• 1 predicate bit per 8 vector bits (lowest predicate bit per lane is significant)
• On load, active elements update the destination
• On store, inactive lanes leave destination unchanged (p0/m) or set to 0’s (p0/z)

Predicate registers track lane activity

255

64b

192

1

31 24

191

64b

128

1

23 16

127

64b

64

1

15 8

63

64b

0

1

7 0

32b

1

32b

1

32b

1

32b

1

32b

0

32b

1

32b

0

32b

0

p0.d

p0.s

49 © 2020 Arm Limited

SVE supports vectorization in complex code
Right from the start, SVE was engineered to handle codes that usually won’t vectorize

1 + 2 + 3 + 4
1 + 2

+

3 + 4

3 7
= =

=

= Extended floating-point horizontal reductions
In-order and tree-based reductions trade-off performance and repeatability.

Gather-load and scatter-store
Loads a single register from several non-contiguous memory locations.

50 © 2020 Arm Limited

A64FX: Spec Summary
• Arm SVE, high performance and high efficiency

• DP performance 2.7+ TFLOPS, >90%@DGEMM
• Memory BW 1024 GB/s, >80%@STREAM Triad

12x compute cores
1x assistant core

A64FX
ISA (Base, extension) Armv8.2-A, SVE
Process technology 7 nm
Peak DP performance > 2.7+ TFLOPS
SIMD width SVE 512-bit
of cores 48 + 4
Memory capacity 32 GiB (HBM2 x4)
Memory peak bandwidth 1024 GB/s
PCIe Gen3 16 lanes
High speed interconnect TofuD integrated

PCle
Controller

Tofu
Interface

C

C

C

C

N
O
C

HBM
2

HBM
2

HBM
2

HBM
2

CMG CMG

CMG CMG

CMG：Core Memory Group NOC：Network on Chip

51 © 2020 Arm Limited

Post-K performance evaluation
• Himeno Benchmark (Fortran90)

† “Performance evaluation of a vector supercomputer SX-aurora TSUBASA”,
SC18, https://dl.acm.org/citation.cfm?id=3291728

© 2020 Arm Limited

Programming Tools for SVE

53 © 2020 Arm Limited

SVE Programming Approaches
Libraries > Autovectorization > compilers directives > intrinsics > assembly

• Libraries:
• ArmPL supports SVE!

• Compilers:
• Auto-vectorization: GCC, Arm Compiler for HPC, Cray, Fujitsu
• Compiler directives, e.g. OpenMP

– #pragma omp parallel for simd
– #pragma vector always

• Intrinsics:
• Arm C Language Extensions for SVE
• Arm Scalable Vector Extensions and Application to Machine Learning

• Assembly:
• Full ISA Specification: The Scalable Vector Extension for Armv8-A
• Lots of worked examples: A Sneak Peek Into SVE and VLA Programming

https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
Arm%20Scalable%20Vector%20Extensions%20and%20application%20to%20Machine%20Learning
https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/-/media/developer/developers/hpc/white-papers/a-sneak-peek-into-sve-and-vla-programming.pdf?revision=c702475b-6325-41a2-b3d3-d9f244028841

54 © 2020 Arm Limited

SVE Support in OSS
Over four years of active, ongoing development

• Arm actively posting SVE open source patches upstream
• Beginning with first public announcement of SVE at HotChips 2016

• Available upstream
• Since GNU Binutils-2.28 Released Feb 2017, includes SVE assembler & disassembler
• Since GCC 8: Full assembly, disassembly and basic auto-vectorization
• Since LLVM 7: Full assembly, disassembly
• Since QEMU 3: User space SVE emulation
• Since GDB 8.2 HPC use cases fully included

• Constant upstream review
• LLVM: Since Nov 2016, as presented at LLVM conference
• Linux kernel: Since Mar 2017, LWN article on SVE support

Automatic Arm support in latest version of all tools – peer to x86

https://sourceware.org/ml/binutils/2017-02/msg00097.html
http://lists.llvm.org/pipermail/llvm-dev/2016-November/106819.html
https://lwn.net/Articles/717804/

55 © 2020 Arm Limited

Targeting SVE with Arm Compiler or GNU 8+

• Compilation targets a specific architecture based on an architecture revision
• -mcpu=native -march=armv8.1-a+lse+sve

– Learn more: https://community.arm.com/.../compiler-flags-across-architectures-march-mtune-and-mcpu

• -march=armv8-a
• Target V8-a
• Will generate NEON instructions
• No SVE

• -march=armv8-a+sve
• Will add SVE instruction generations

• Check the assembly (-S)
• armclang++ -S -o code.s -Ofast -g -march=armv8-a+sve code.cpp
• g++ -S -o code.s -Ofast -g -march=armv8-a+sve code.cpp

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/compiler-flags-across-architectures-march-mtune-and-mcpu

56 © 2020 Arm Limited

Arm Compiler Vectorization Control
OpenMP and clang directives are supported by the Arm Compiler for HPC

C/C++ Fortran Description

#pragma ivdep !DIR$ IVDEP Ignore potential memory dependencies
and vectorize the loop.

#pragma vector always !DIR$ VECTOR ALWAYS Forces the compiler to vectorize a loop
irrespective of any potential
performance implications.

#pragma novector !DIR$ NO VECTOR Disables vectorization of the loop.

Clang compiler directives for C/C++ Description

#pragma clang loop vectorize(assume_safety) Assume there are no aliasing issues in a loop.

#pragma clang loop unroll_count(_value_) Force a scalar loop to unroll by a given factor.

#pragma clang loop interleave_count(_value_) Force a vectorized loop to interleave by a factor

57 © 2020 Arm Limited

Arm C Language Extensions (ACLE)
Intrinsics and other features for supporting Arm features in C and C++

• ACLE extends C/C++ with Arm-specific features
• Predefined macros: __ARM_ARCH_ISA_A64, __ARM_BIG_ENDIAN, etc.
• Intrinsic functions: __clz(uint32_t x), __cls(uint32_t x), etc.
• Data types: SVE, NEON and FP16 data types

• ACLE for SVE enables VLA programming with ACLE
• Nearly one intrinsic per SVE instruction
• Data types to represent the size-less vectors used for SVE intrinsics

• Intended for users that…
• Want to hand-tune SVE code
• Want to adapt or hand-optimize applications and libraries
• Need low-level access to Arm targets

58 © 2020 Arm Limited

NEON: Fixed Width 128-bit (arm_neon.h)

Data types are encoded for 128-bit
vectors:
float32x4_t va =
vld1q_f32(&a[i]);

• Load 4x32-bit floating point values

SVE: VLA (arm_sve.h)

Intrinsics are same for 128-bit -> 2048-bit
vectors
svfloat32_t va = svld1(Pg, &a[i]);

• Load a vector of 32-bit floating point values
• Don’t know how many variables are in there

SVE data types are defined as ‘sizeless’
(more restrictive)
Don’t get confused:
svfloat32x4_t va4 = svld4(Pg, &a[i]);

• A tuple of 4 svfloat32_t vectors
58

SVE Intrinsics
When you don’t know the vector length (VLA)

59 © 2020 Arm Limited

Original Code

for (int i=0; i < N; ++i) {

a[i] = 2.0 * a[i];

}

128-bit NEON vectorization

int i;

// vector loop
for (i=0; (i<N–3) && (N&~3); i+=4) {
float32x4_t va = vld1q_f32(&a[i]);
va = vmulq_n_f32(va, 2.0);
vst1q_f32(&a[i], va)

}
// drain loop
for (; i < N; ++i)
a[i] = 2.0 * a[i];

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

This is NEON,
not SVE!

60 © 2020 Arm Limited

128-bit NEON vectorization

int i;

// vector loop
for (i=0; (i<N–3) && (N&~3); i+=4) {
float32x4_t va = vld1q_f32(&a[i]);
va = vmulq_n_f32(va, 2.0);
vst1q_f32(&a[i], va)

}
// drain loop
for (; i < N; ++i)
a[i] = 2.0 * a[i];

SVE vectorization

for (int i = 0 ; i < N; i += svcntw())

{

svbool_t Pg = svwhilelt_b32(i, N);

svfloat32_t va = svld1(Pg, &a[i]);

va = svmul_x(Pg, va, 2.0);

svst1(Pg, &a[i], va);

}

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

61 © 2020 Arm Limited

SVE vectorization

for (int i = 0 ; i < N; i += svcntw())

{

svbool_t Pg = svwhilelt_b32(i, N);

svfloat32_t va = svld1(Pg, &a[i]);

va = svmul_x(Pg, va, 2.0);

svst1(Pg, &a[i], va);

}

Assembly
cmp w0, #1
b.lt .LBB0_3
mov w8, wzr

.LBB0_2:
whilelt p0.s, w8, w0
sxtw x9, w8
ld1w { z0.s }, p0/z, [x1, x9, lsl #2]
incw x8
cmp w8, w0
fmul z0.s, p0/m, z0.s, #2.0
st1w { z0.s }, p0, [x1, x9, lsl #2]
b.lt .LBB0_2

.LBB0_3:
ret

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

armclang -march=armv8.2-a+sve -O3 -S sve2.c

© 2020 Arm Limited

Summary

63 © 2020 Arm Limited

Cluster access and hands-on materials
gitlab.arm-hpc.org/training/mug20

Accessing the Cluster

• ssh student@cluster.arm-hpc.org
• Password: Tr@ining!

• A private AWS Graviton 2 instance with all the
necessary software installed and configured will
be allocated for you.

• Introductory hands-on materials are in $HOME.
• Instructions on how to connect to your AWS

instance via Forge Remote Client are given when
you log in.

64 © 2020 Arm Limited

MVAPICH2 on AWS Graviton 2 Quick Start
• module load Neoverse-N1/RHEL/7/gcc-9.3.0/mvapich2/2.3.4

or, to use MVAPICH2 with Arm Compiler

module load Neoverse-N1/RHEL/7/arm-linux-compiler-20.2/mvapich2/2.3.4

• module load Generic-AArch64/RHEL/7/forge/20.1
• module load Generic-AArch64/RHEL/7/arm-instruction-emulator/20.0

• See “Slides” folder or “README” files for instructions
• Hands-on code examples:

• 01_Compiler
• 02_Forge
• 03_ArmIE
• 04_ACLE

65 © 2020 Arm Limited

Install Arm Forge Remote Client
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

• Go to the Arm Forge download page
• Linux:

• Use the full Arm Forge installation package
• For Ubuntu 19.04 and later, also install

libncurses5 and libtinfo5

• Windows and macOS:
• Navigate to the bottom of the page and use the

appropriate link

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-forge

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2020 Arm Limited

67 © 2020 Arm Limited

Arm DDT cheat sheet
Start DDT interactively, remotely, or from a batch script.

• Load the environment module:
• $ module load forge

• Prepare the code:
• $ mpicc -O0 -g myapp.c -o myapp.exe
• $ mpfort -O0 -g myapp.f -o myapp.exe

• Start DDT in interactive mode:
• $ ddt mpirun -n 8 ./myapp.exe arg1 arg2 …

• Or use reverse connect:
• On the login node:

• $ ddt &
• (or use the remote client)
• Then, edit the job script to run the following command and submit:

• ddt --connect mpirun -n 8 ./myapp.exe arg1 arg2 …

68 © 2020 Arm Limited

DDT command line options
$ ddt --help
Arm Forge 18.2.1 - Arm DDT

Usage: ddt [OPTION...] [PROGRAM [PROGRAM_ARGS]]
ddt [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

--connect Reverse Connect (launch as a server and wait)
--attach=[host1:]pid1,[host2:]pid2... [PROGRAM] attach to PROGRAM being run by list of host:pid
--attach-mpi=MPI_PID [--subset=rank1,rank2,rank3,...] [PROGRAM] attach to processes in an MPI program.
--break-at=LOCATION[,START:EVERY:STOP] [if CONDITION] set a breakpoint at LOCATION
--trace-at=LOCATION[,START:EVERY:STOP],VAR1,VAR2,... set a tracepoint at LOCATION
--cuda enable CUDA
--mem-debug[=(fast|balanced|thorough|off)] configure memory debugging (defaults to fast)
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--offline run through program without user interaction
-s, --silent don't write unnecessary output to the command line

69 © 2020 Arm Limited

Arm MAP cheat sheet
Generate profiles and view offline

• Load the environment module
• $ module load forge

• Prepare the code
• $ mpicc -O -g myapp.c -o myapp.exe
• $ mpfort -O -g myapp.f -o myapp.exe

• Offline: edit the job script to run Arm MAP in “profile” mode
• $ map --profile mpirun ./myapp.exe arg1 arg2

• View profile in MAP:
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)

70 © 2020 Arm Limited

MAP command line options
$ map --help
Arm Forge 18.2.1 - Arm MAP

Usage: map [OPTION...] [PROGRAM [PROGRAM_ARGS]]
map [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
map [OPTION...] [MAP_FILE]

--connect Reverse Connect (launch as a server and wait for the GUI to connect)
--cuda-kernel-analysis Analysis of the CUDA kernel source code lines
--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--export=FILE.json Exports a specified .map file as JSON
--export-functions=FILE Export all the available columns in the functions view to a CSV file (use --profile)
--select-ranks=RANKS Select ranks to profile.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--profile run through program without user interaction

71 © 2020 Arm Limited

Arm Performance Reports cheat sheet
Generate text and HTML reports from application runs or MAP files

• Load the environment module:
• $ module load reports

• Run the application:
• perf-report mpirun -n 8 ./myapp.exe

• … or, if you already have a MAP file:
• perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• Analyze the results
• $ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
• $ firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

72 © 2020 Arm Limited

Performance Reports command line options
$ perf-report --help
Arm Performance Reports 18.2.1 - Arm Performance Reports

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] MAP_FILE

--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
--nodes=NUMNODES configure the number of nodes for MPI jobs
-o, --output=FILE writes the Performance Report to FILE instead of an auto-generated name.
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--procs-per-node=PROCS configure the number of processes per node for MPI jobs
--select-ranks=RANKS Select ranks to profile.

73 © 2020 Arm Limited

SVE Resources
http://developer.arm.com/hpc

• Porting and Optimizing Guides
• For SVE: https://developer.arm.com/docs/101726/0110
• For Arm in general: https://developer.arm.com/docs/101725/0110

• The SVE Specification
• Arm Architecture Reference Manual Supplement, SVE for ARMv8-A

• ACLE References and Examples
• ACLE: https://developer.arm.com/docs/101028/latest
• ACLE for SVE: https://developer.arm.com/docs/100987/latest
• Worked examples: A Sneak Peek Into SVE and VLA Programming
• Optimized machine learning: Arm SVE and Applications to Machine Learning

https://developer.arm.com/docs/101726/0110
https://developer.arm.com/docs/101725/0110
https://developer.arm.com/products/architecture/a-profile/docs/arm-architecture-reference-manual-supplement-armv8-a
https://developer.arm.com/docs/101028/latest
https://developer.arm.com/docs/100987/latest
https://developer.arm.com/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning

