
Devendar Bureddy, Aug 2020

SHARP: IN-NETWORK SCALABLE STREAMING HIERARCHICAL
AGGREGATION AND REDUCTION PROTOCOL

2

IN NETWORK COMPUTING
Datacenter Trends

Better DL Model Efficient InterconnectExponential Data Growth

Networking Moore’s LawMoore’s Law

3

IN NETWORK COMPUTING

Offload – Have someone else do the work

Move functionality from the CPU to the network

Co-Design – Re-thinking the boundaries between different components

Move functionality from SW to HW / end node to switches

In-Network Computing – Move traditionally compute operations to the network

A type of Co-Design

Offload, Co-design and In-network Computing

4

CORE DIRECT

5

CORE DIRECT

Offload complex communication patterns

Send to multiple destinations

Receive from multiple sources

Dependencies between the operations

Define communication graph

Two new operations (WQE Opcodes):

WAIT / ENABLE

HW Execution (including progress)

Cross-Channel

6

CORE DIRECT

Example: Tree based reduce algorithm

Focus on Rank=2

Two main flows:

1. Receive data from Ranks: 0, 3
Calculate reduction σ𝐷0,3,2
Send to Rank 5

2. Receive data from Rank=5
Forward data down the tree

Cross-Channel

7

SCALABLE HIERARCHICAL
AGGREGATION AND REDUCTION

PROTOCOL (SHARP)

8NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

THE NEED FOR INTELLIGENT AND FASTER INTERCONNECT
Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

GPU

CPU

GPU

CPU

Onload Network In-Network Computing

GPU

CPU

CPU

GPU

GPU

CPU

GPU

CPU

GPU

CPU

CPU

GPU

CPU-Centric (Onload) Data-Centric (Offload)

Must Wait for the Data

Creates Performance Bottlenecks

Analyze Data as it Moves!

Higher Performance and Scale

9NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

THE NEED FOR INTELLIGENT AND FASTER INTERCONNECT
Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

Communications Latencies

of 30-40us

Communications Latencies

of 3-4us

GPU

CPU

GPU

CPU

GPU

CPU

CPU

GPU

GPU

CPU

GPU

CPU

GPU

CPU

CPU

GPU

CPU-Centric (Onload) Data-Centric (Offload)

10

COLLECTIVE OPERATIONS

• Many2One and One2Many traffic patterns –
possible network congestion

• Probably not a good solution for large data

• Large scale requires higher tree / larger radix

• Result distribution – over the tree / MC

Tress

Switch

EndNode

Stage1

Stage2

11

COLLECTIVE OPERATIONS

• Many2One and One2Many traffic patterns –
possible network congestion

• Probably not a good solution for large data

• Large scale requires higher tree / larger radix

• Result distribution – over the tree / MC

Recursive Doubling

Rank 1 Rank 2 Rank 3 Rank 4

Step 1

Step 2

Step 3

Step 4

½ Data

¼ Data

¼ Data

½ Data

Calculation phase

Result sending phase

12NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

SCALABLE HIERARCHICAL AGGREGATION AND REDUCTION
PROTOCOL (SHARP)

In-network Tree based aggregation mechanism

Multiple simultaneous outstanding operations

For HPC (MPI / SHMEM) and Distributed Machine Learning applications

Scalable High Performance Collective Offload

Barrier, Reduce, All-Reduce, Broadcast and more

Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND

Integer and Floating-Point, 16/32/64 bits

Data
Aggregated

Aggregated
Result

Aggregated
Result

Data

Switch Switch

Switch

HostHostHost Host Host

13

SHARP

Switch hardware-based network- level reduction supporting for the full range of message sizes

EDR InfiniBand Switch-IB-2 switch introduced support for short message reductions

Referred to as Low Latency Transmission (LLT) SHARP

Latency optimized, fully offloaded to the switches – asynchronous

HDR InfiniBand Quantum switch added support for long vector reduction

Referred to as Streaming Aggregation (SAT) SHARP

Bandwidth optimized, fully offloaded to the network hardware - asynchronous

14NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

SHARP ALLREDUCE PERFORMANCE ADVANTAGES
Providing Flat Latency, 7X Higher Performance

15

SHARP V2SHARP NEW FEATURES FEATURES

• SHARP v2.0 HDR Quantum switch

• Support for small vector reductions

• Improved latency reduction for small vectors (LLT – low latency trees)

• Support for large vector reductions – perform reductions at line rate (SAT – streaming aggregation trees)

• Support for two simultaneous streaming operations per switch (limited resource)

• Works together with GPUDirect RDMA

• SAT killer app is distributed, synchronous deep learning workloads

• Distributed stochastic gradient descent

• Limiter is large vector allreduce / bandwidth – gradient averaging between nodes

• Initial Support for BCAST

16

SHARP V2SHARP NEW FEATURES FEATURES

• Support for using SHARP on virtual ports

• Support for using UCX for message communication between SHARPD & SHARP_AM

• Non-default PKEY support

• PCI Relaxed Ordering

17

SHARP DESIGN CHARACTERISTICS – RELIABILITY MODEL

Transport provides
data transfer

reliability

Tree failure

revoke resources

Notify the user of
failure

18

SHARRP DESIGN CHARACTERISTICS

New tree type defined which supports the Streaming-Aggregation

Same layout as that for the low-latency reduction trees

Tree is locked for a specified duration before use

Scarce resource

Mirror low-latency reduction tree is used to lock the tree

Transport selected: RC

Reliable

Sparse connectivity

Data is pipelined through the tree

19NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NETWORK TOPOLOGY DESIGN

Rail optimized topology design properties:

Keep rail affinity connectivity

Maximize the number of servers that are reachable on each switch hop (or less switch hops)

Maximize SHARP reduction capabilities for multi-rail configurations when framework can utilize it

Rail-optimization for SHARPv2

Multi Rail Server

1 2

Multi Rail Server

1 2

Multi Rail Server

1 2

Multi Rail Server

1 2

20NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NETWORK TOPOLOGY DESIGN

Fit rail-aware workloads – such as NCCL

Inter-Node

Optimal rail-optimization for SHARPv2

GPU GPU GPU GPU GPU GPU GPU GPU

HCA1 HCA2 HCA1 HCA2 HCA1 HCA2 HCA1 HCA2

GPU GPU GPU GPU GPU GPU GPU GPU

NVlink

HCA1 HCA2 HCA1 HCA2 HCA1 HCA2 HCA1 HCA2

DGX-A100

GPU GPU GPU GPU GPU GPU GPU GPU

NVlink

HCA1 HCA2 HCA3 HCA4 HCA5 HCA6 HCA7 HCA8

GPU GPU GPU GPU GPU GPU GPU GPU

HCA1 HCA2 HCA1 HCA2 HCA1 HCA2 HCA1 HCA2

GPU GPU GPU GPU GPU GPU GPU GPU

NVlink

HCA1 HCA2 HCA1 HCA2 HCA1 HCA2 HCA1 HCA2

DGX-A100

GPU GPU GPU GPU GPU GPU GPU GPU

NVlink

HCA1 HCA2 HCA3 HCA4 HCA5 HCA6 HCA7 HCA8

21

SHARP SW ARCHITECTURE

• MPI

• Open MPI/Specturm MPI, MVAPICH

• HCOLL

• Optimized collective library.

• NCCL

• Optimized GPU collective library

• SHARP

• Easy to use high level API

SHARP(libsharp/libsharp_coll)

HCOLL

MPI

InfiniBand Network

NCCL

DL Frameworks

22

SHARP S/W ARCHITECTURE

Aggregation

Node

Aggregation

Node Aggregation

Node

Aggregation

Node
….

Compute node

MPI

Process

SHARPD

daemon

Compute node

MPI

Process

SHARPD

daemon

Compute node

MPI

Process

SHARPD

daemon

..….

Subnet
Manager

SHARP Aggregation
Manager (AM)

HCA FW: v20.27.1016

HDR ConnectX-6

HPC-X v2.6 + NCCL v2.6

HDR Quantum Switch

HDR ConnectX-6

HPC-X v2.7 + NCCL v2.7

23

USING SHARP WITH MPI
• Integrated with multiple MPI libraries

• MVAPICH2

• MV2_ENABLE_SHARP

• OMPI (HPC-X, Spectrum MPI)

• HCOLL_ENABLE_SHARP

• SHARP_COLL_ENABLE_SAT (for streaming aggregation)

24

MPI COLLECTIVE OFFLOADS USING SHARP

HCOLL_ENABLE_SHARP

Enable SHARP

HCOLL_SHARP_NP (default: 2)

▪ Number of nodes(node leaders) threshold in communicator to create SHARP

group and use SHARP collectives

SHARP_COLL_LOG_LEVEL

0 – fatal , 1 – error, 2 – warn, 3 – info, 4 – debug, 5 – trace

SHARP_COLL_ENABLE_SAT=1

Enables SHARP Streaming aggregation

SHARP_COLL_SAT_THRESHOLD=16386

Message size threshold to switch from LLT(Local latency Tree) to SAT (Streaming Aggregation Tree)

25

MPI COLLECTIVE OFFLOADS USING SHARP

Resources (quota)

SHARP_COLL_JOB_QUOTA_MAX_GROUPS

#communicators

SHARP_COLL_JOB_QUOTA_OSTS

Parallelism on communicator

SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST

Payload/OST

For complete list of SHARP COLL tuning options

$HPCX_SHARP_DIR/bin/sharp_coll_dump_config -f

26

USING SHARP WITH MPI
$ mpirun -np 128 -map-by ppr:1:node -x HCOLL_ENABLE_SHARP=3 -x SHARP_COLL_ENABLE_SAT=1 ./osu_allreduce
OSU MPI AllreduceLatency Test v5.6.2
4 5.61
8 5.53
16 5.55
32 5.76
64 5.78
128 5.86
256 6.51
512 6.92
1024 7.64
2048 8.91
4096 10.63
8192 14.54
16384 13.63
32768 16.73
65536 19.16
131072 25.71
262144 33.29
524288 57.17
1048576 96.53

LLT

SAT

27

GPU DIRECT RDMA

Network adapter can directly read data from GPU device memory

Avoids copies through the host

Eliminates CPU bandwidth and latency bottlenecks

Uses remote direct memory access (RDMA) transfers between
GPUs

Resulting in significantly improved MPISendRecv efficiency
between GPUs in remote nodes

Fastest possible communication between GPU and other PCI-E
devices

Allows for better asynchronous communication

With GPUDirect™ RDMA

Using PeerDirect™

28

SHARP + GPU DIRECT RDMA

Supports CUDA buffers in SHARP API

GDR copy optimizations for smaller messages

GPUDirect RDMA Streaming Aggregation

NVLINK + GPUDirect RDMA + SHARP

29

OPTIMIZED INTER-GPU COMMUNICATION

NCCL : NVIDIA Collective Communication Library
Communication library running on GPUs, for GPU buffers.

Binaries : https://developer.nvidia.com/nccl and in NGC containers

Source code : https://github.com/nvidia/nccl

Perf tests : https://github.com/nvidia/nccl-tests

NVLink
PCI

Shared memory

Sockets
InfiniBand

Other networks

GPU GPU

https://developer.nvidia.com/nccl
https://github.com/nvidia/nccl
https://github.com/nvidia/nccl-tests

30

CUDA

NVIDIA GPUs

USING SHARP WITH DL
DL stack

NCCL/SHARP CUBLASCUDNN

Frameworks (Tensorflow/Horovod, PyTorch, MXNet, …)

31

MULTI-GPU TRAINING
Single-GPU

parameters

gradients

batch
(e.g. 256 images)

Forward/
Backward

Update Database : GBs of input data :
images, sound, …

32

USING SHARP WITH DL
Data parallel

parameters

batch

gradients

local gradients

parameters

batch

gradients

local gradients

parameters

batch

gradients

local gradients

NCCL/SHARP Allreduce : Sum gradients across GPUs

parameters

batch

gradients

local gradients

33

USING SHARP WITH NCCL
• NCCL Plugin

• Source : https://github.com/Mellanox/nccl-rdma-sharp-plugins

• Binary distribution with HPC-X

• Simple to use

• Set plugin lib path with LD_LIBRARY_PATH

• NCCL variables:

• NCCL_COLLNET_ENABLE=1

• NCCL_ALGO=CollNet (< NCCL-2.7.8)

https://github.com/Mellanox/nccl-rdma-sharp-plugins

34NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

INFINIBAND SHARP AI PERFORMANCE ADVANTAGE
2.5X Higher Performance

35

INFINIBAND SHARP AGGREGATION - SUMMARY

• Low latency Trees for smaller messages to accelerate MPI application

• High Bandwidth Streaming trees to achieves high network utilization to accelerate DL applications

• Higher efficiency with in-network computing than any host based end-point based algorithms

