SHARP: IN-NETWORK SCALABLE STREAMING HIERARCHICAL AGGREGATION AND REDUCTION PROTOCOL

Devendar Bureddy, Aug 2020
IN NETWORK COMPUTING

Datacenter Trends

Moore’s Law

Networking Moore’s Law

Exponential Data Growth

Better DL Model

Efficient Interconnect
IN NETWORK COMPUTING
Offload, Co-design and In-network Computing

- Offload - Have someone else do the work
 - Move functionality from the CPU to the network

- Co-Design - Re-thinking the boundaries between different components
 - Move functionality from SW to HW / end node to switches

- In-Network Computing - Move traditionally compute operations to the network
 - A type of Co-Design
CORE DIRECT
- Offload complex communication patterns
 - Send to multiple destinations
 - Receive from multiple sources
 - Dependencies between the operations
- Define communication graph
 - Two new operations (WQE Opcodes):
 - WAIT / ENABLE
- HW Execution (including progress)
Example: Tree based reduce algorithm

- Focus on Rank=2

Two main flows:

1. Receive data from Ranks: 0, 3
 Calculate reduction $\sum D_{0,3,2}$
 Send to Rank 5

2. Receive data from Rank=5
 Forward data down the tree
SCALABLE HIERARCHICAL AGGREGATION AND REDUCTION PROTOCOL (SHARP)
THE NEED FOR INTELLIGENT AND FASTER INTERCONNECT

Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

CPU-Centric (Onload)

Must Wait for the Data
Creates Performance Bottlenecks

Data-Centric (Offload)

Analyze Data as it Moves!
Higher Performance and Scale
THE NEED FOR INTELLIGENT AND FASTER INTERCONNECT

Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

CPU-Centric (Onload)

Communications Latencies of 30-40us

Data-Centric (Offload)

Communications Latencies of 3-4us
COLLECTIVE OPERATIONS

Many2One and One2Many traffic patterns - possible network congestion

 Probably not a good solution for large data

Large scale requires higher tree / larger radix

Result distribution - over the tree / MC
COLLECTIVE OPERATIONS

Recursive Doubling

- Many2One and One2Many traffic patterns - possible network congestion
- Probably not a good solution for large data
- Large scale requires higher tree / larger radix
- Result distribution - over the tree / MC
SCALABLE HIERARCHICAL AGGREGATION AND REDUCTION PROTOCOL (SHARP)

In-network Tree based aggregation mechanism

Multiple simultaneous outstanding operations

For HPC (MPI / SHMEM) and Distributed Machine Learning applications

Scalable High Performance Collective Offload

Barrier, Reduce, All-Reduce, Broadcast and more

Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND

Integer and Floating-Point, 16/32/64 bits
SHARP

Switch hardware-based network-level reduction supporting for the full range of message sizes

EDR InfiniBand Switch-IB-2 switch introduced support for short message reductions
 Referred to as Low Latency Transmission (LLT) SHARP
 Latency optimized, fully offloaded to the switches - asynchronous

HDR InfiniBand Quantum switch added support for long vector reduction
 Referred to as Streaming Aggregation (SAT) SHARP
 Bandwidth optimized, fully offloaded to the network hardware - asynchronous
SHARP ALLREDUCE PERFORMANCE ADVANTAGES
Providing Flat Latency, 7X Higher Performance
SHARP NEW FEATURES

• SHARP v2.0 HDR Quantum switch
 • Support for small vector reductions
 • Improved latency reduction for small vectors (LLT - low latency trees)
 • Support for large vector reductions - perform reductions at line rate (SAT - streaming aggregation trees)
 • Support for two simultaneous streaming operations per switch (limited resource)
• Works together with GPUDirect RDMA
• SAT killer app is distributed, synchronous deep learning workloads
 • Distributed stochastic gradient descent
 • Limiter is large vector allreduce / bandwidth - gradient averaging between nodes
• Initial Support for BCAST
SHARP NEW FEATURES

• Support for using SHARP on virtual ports
• Support for using UCX for message communication between SHARPD & SHARP_AM
• Non-default PKEY support
• PCI Relaxed Ordering
SHARP DESIGN CHARACTERISTICS - RELIABILITY MODEL

Transport provides data transfer reliability

Tree failure

revoke resources

Notify the user of failure
SHARRP DESIGN CHARACTERISTICS

New tree type defined which supports the Streaming-Aggregation

Same layout as that for the low-latency reduction trees

Tree is locked for a specified duration before use

Scarce resource

Mirror low-latency reduction tree is used to lock the tree

Transport selected: RC

Reliable

Sparse connectivity

Data is pipelined through the tree
Rail optimized topology design properties:

- Keep rail affinity connectivity
- Maximize the number of servers that are reachable on each switch hop (or less switch hops)
- Maximize SHARP reduction capabilities for multi-rail configurations when framework can utilize it
NETWORK TOPOLOGY DESIGN

Optimal rail-optimization for SHARPv2

Fit rail-aware workloads - such as NCCL
SHARP SW ARCHITECTURE

- **MPI**
 - Open MPI/Specturm MPI, MVAPICH
- **HCOLL**
 - Optimized collective library.
- **NCCL**
 - Optimized GPU collective library
- **SHARP**
 - Easy to use high level API

![Diagram](image.png)
USING SHARP WITH MPI

• Integrated with multiple MPI libraries
 • MVAPICH2
 • MV2_ENABLE_SHARP
 • OMPI (HPC-X, Spectrum MPI)
 • HCOLL_ENABLE_SHARP
 • SHARP_COLL_ENABLE_SAT (for streaming aggregation)
MPI COLLECTIVE OFFLOADS USING SHARP

HCOLL_ENABLE_SHARP

Enable SHARP

HCOLL_SHARP_NP (default: 2)

- Number of nodes (node leaders) threshold in communicator to create SHARP group and use SHARP collectives

SHARP_COLL_LOG_LEVEL

0 - fatal, 1 - error, 2 - warn, 3 - info, 4 - debug, 5 - trace

SHARP_COLL_ENABLE_SAT=1

Enables SHARP Streaming aggregation

SHARP_COLL_SAT_THRESHOLD=16386

Message size threshold to switch from LLT (Local latency Tree) to SAT (Streaming Aggregation Tree)
MPI COLLECTIVE OFFLOADS USING SHARP

Resources (quota)

SHARP_COLL_JOB_QUOTA_MAX_GROUPS

#communicators

SHARP_COLL_JOB_QUOTA_OSTS

Parallelism on communicator

SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST

Payload/OST

For complete list of SHARP COLL tuning options

$HPCX_SHARP_DIR/bin/sharp_coll_dump_config -f
USING SHARP WITH MPI

$ mpirun -np 128 -map-by ppr:1:node -x HCOLL_ENABLE_SHARP=3 -x SHARP_COLL_ENABLE_SAT=1 ./osu_allreduce

OSU MPI Allreduce Latency Test v5.6.2

<table>
<thead>
<tr>
<th>Size</th>
<th>LLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.61</td>
</tr>
<tr>
<td>8</td>
<td>5.53</td>
</tr>
<tr>
<td>16</td>
<td>5.55</td>
</tr>
<tr>
<td>32</td>
<td>5.76</td>
</tr>
<tr>
<td>64</td>
<td>5.78</td>
</tr>
<tr>
<td>128</td>
<td>5.86</td>
</tr>
<tr>
<td>256</td>
<td>6.51</td>
</tr>
<tr>
<td>512</td>
<td>6.92</td>
</tr>
<tr>
<td>1024</td>
<td>7.64</td>
</tr>
<tr>
<td>2048</td>
<td>8.91</td>
</tr>
<tr>
<td>4096</td>
<td>10.63</td>
</tr>
<tr>
<td>8192</td>
<td>14.54</td>
</tr>
<tr>
<td>16384</td>
<td>13.63</td>
</tr>
<tr>
<td>32768</td>
<td>16.73</td>
</tr>
<tr>
<td>65536</td>
<td>19.16</td>
</tr>
<tr>
<td>131072</td>
<td>25.71</td>
</tr>
<tr>
<td>262144</td>
<td>33.29</td>
</tr>
<tr>
<td>524288</td>
<td>57.17</td>
</tr>
<tr>
<td>1048576</td>
<td>96.53</td>
</tr>
</tbody>
</table>
GPU DIRECT RDMA

Network adapter can directly read data from GPU device memory

Avoids copies through the host

Eliminates CPU bandwidth and latency bottlenecks

Uses remote direct memory access (RDMA) transfers between GPUs

Resulting in significantly improved MPISendRecv efficiency between GPUs in remote nodes

Fastest possible communication between GPU and other PCI-E devices

Allows for better asynchronous communication
SHARP + GPU DIRECT RDMA

Supports CUDA buffers in SHARP API

GDR copy optimizations for smaller messages

GPUDirect RDMA Streaming Aggregation

NVLINK + GPUDirect RDMA + SHARP
OPTIMIZED INTER-GPU COMMUNICATION

NCCL: NVIDIA Collective Communication Library
Communication library running on GPUs, for GPU buffers.

- NVLink
- PCI
- Shared memory
- Sockets
- InfiniBand
- Other networks

Binaries: https://developer.nvidia.com/nccl and in NGC containers
Source code: https://github.com/nvidia/nccl
Perf tests: https://github.com/nvidia/nccl-tests
USING SHARP WITH DL

DL stack

Frameworks (Tensorflow/Horovod, PyTorch, MXNet, …)

NCCL/SHARP

CUDNN

CUBLAS

CUDA

NVIDIA GPUs
MULTI-GPU TRAINING

Single-GPU

parameters

Forward/Backward

batch (e.g. 256 images)

gradients

Database : GBs of input data : images, sound, ...

Update
USING SHARP WITH DL

Data parallel

NCCL/SHARP Allreduce: Sum gradients across GPUs
USING SHARP WITH NCCL

• NCCL Plugin
 • Source: https://github.com/Mellanox/nccl-rdma-sharp-plugins
 • Binary distribution with HPC-X

• Simple to use
 • Set plugin lib path with LD_LIBRARY_PATH
 • NCCL variables:
 • NCCL_COLLNET_ENABLE=1
 • NCCL_ALGO=CollNet (< NCCL-2.7.8)
INFINIBAND SHARP AI PERFORMANCE ADVANTAGE

2.5X Higher Performance

128 NVIDIA DGX A100
(1024 GPUs, 1024 InfiniBand Adapters)
NCCL AllReduce Performance Advantage with SHARP

Performance Increase Factor

Message Size (B)
INFINIBAND SHARP AGGREGATION - SUMMARY

- Low latency Trees for smaller messages to accelerate MPI application
- High Bandwidth Streaming trees to achieve high network utilization to accelerate DL applications
- Higher efficiency with in-network computing than any host based end-point based algorithms