
How to Boost the Performance of Your HPC/AI Applications with
MVAPICH2 Libraries?

A Tutorial at MUG’19

by

The MVAPICH Team

The Ohio State University

http://mvapich.cse.ohio-state.edu/

Latest version of the slides available at
http://cse.osu.edu/~subramon/mug19-mvapich2-tutorial.pdf

http://mvapich.cse.ohio-state.edu/
http://cse.osu.edu/%7Esubramon/mug19-mvapich2-tutorial.pdf

MUG’19 2Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving
importance

MUG’19 3Network Based Computing Laboratory

Brief History of Deep Learning (DL)

Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

MUG’19 4Network Based Computing Laboratory

Understanding the Deep Learning Resurgence

Courtesy: http://www.deeplearningbook.org/contents/intro.html

• Deep Learning is a sub-set of Machine
Learning
– But, it is perhaps the most radical and

revolutionary subset

– Automatic feature extraction vs. hand-
crafted features

• Deep Learning
– A renewed interest and a lot of hype!

– Key success: Deep Neural Networks (DNNs)

– Everything was there since the late 80s
except the “computability of DNNs”

http://www.deeplearningbook.org/contents/intro.html

MUG’19 5Network Based Computing Laboratory

Deep Learning, Many-cores, and HPC

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

• NVIDIA GPUs are the main driving force for faster training of DL models
– The ImageNet Challenge - (ILSVRC)
– 90% of the ImageNet teams used GPUs in 2014*
– Deep Neural Networks (DNNs) like AlexNet, GoogLeNet, and VGG are used
– A natural fit for DL due to the throughput-oriented nature

• In the High Performance Computing (HPC) arena
– 124/500 Top HPC systems use NVIDIA GPUs (Jun ’19)
– CUDA-Aware Message Passing Interface (MPI)
– NVIDIA Fermi, Kepler, Pascal, and Volta architecture
– DGX-1 (Pascal) and DGX-2 (Volta)

• Dedicated DL supercomputers

Accelerator/CP
Performance Share

www.top500.org

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/

MUG’19 6Network Based Computing Laboratory

Supporting Programming Models for Multi-Petaflop and
Exaflop Systems: Challenges

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications (HPC and DL)

Networking Technologies
(InfiniBand, 40/100/200GigE,

Aries, and Omni-Path)

Multi-/Many-core
Architectures

Accelerators
(GPU and FPGA)

Middleware Co-Design
Opportunities
and Challenges
across Various

Layers

Performance
Scalability
Resilience

Communication Library or Runtime for Programming Models
Point-to-point

Communication
Collective

Communication
Energy-

Awareness
Synchronization

and Locks
I/O and

File Systems
Fault

Tolerance

MUG’19 7Network Based Computing Laboratory

Designing (MPI+X) for Exascale
• Scalability for million to billion processors

– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

• Scalable Collective communication
– Offloaded
– Non-blocking
– Topology-aware

• Balancing intra-node and inter-node communication for next generation multi-/many-core
(128-1024 cores/node)

– Multiple end-points per node
• Support for efficient multi-threading
• Integrated Support for GPGPUs and Accelerators
• Fault-tolerance/resiliency
• QoS support for communication and I/O
• Support for Hybrid MPI+PGAS programming

• MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, CAF, MPI + UPC++…
• Virtualization
• Energy-Awareness

MUG’19 8Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,025 organizations in 89 countries

– More than 563,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 5th, 448, 448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 15th, 570,020 cores (Neurion) in South Korea and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
Partner in the TACC Frontera System

http://mvapich.cse.ohio-state.edu/

MUG’19 9Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family (for HPC and DL)

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point

Primitives

Collectives
Algorithms

Energy-
Awareness

Remote
Memory
Access

I/O and
File Systems

Fault
Tolerance

Virtualization Active
Messages

Job Startup
Introspectio
n & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC SHARP2* ODP
SR-
IOV

Multi
Rail

Transport Mechanisms
Shared

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink CAPI*

* Upcoming

XPMEM

MUG’19 10Network Based Computing Laboratory

• Research is done for exploring new designs

• Designs are first presented to conference/journal publications

• Best performing designs are incorporated into the codebase

• Rigorous Q&A procedure before making a release
– Exhaustive unit testing

– Various test procedures on diverse range of platforms and interconnects

– Performance tuning

– Applications-based evaluation

– Evaluation on large-scale systems

• Even alpha and beta versions go through the above testing

Strong Procedure for Design, Development and Release

MUG’19 11Network Based Computing Laboratory

MVAPICH2 Software Family
Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’19 12Network Based Computing Laboratory

• Released on 08/09/2019

• Major Features and Enhancements

– Improved performance for inter-node communication

– Improved performance for Gather, Reduce, and Allreduce with cyclic hostfile

– - Thanks to X-ScaleSolutions for the patch

– Improved performance for intra-node point-to-point communication

– Add support for Mellanox HDR adapters

– Add support for Cascade lake systems

– Add support for Microsoft Azure platform

• Enhanced point-to-point and collective tuning for Microsoft Azure

– Add support for new NUMA-aware hybrid binding policy

– Add support for AMD EPYC Rome architecture

– Improved multi-rail selection logic

– Enhanced heterogeniety detection logic

– Enhanced point-to-point and collective tuning for AMD EPYC Rome, Frontera@TACC, Mayer@Sandia, Pitzer@OSC,
Summit@ORNL, Lassen@LLNL, and Sierra@LLNL systems

– Add multiple PVARs and CVARs for point-to-point and collective operations

MVAPICH2 2.3.2

MUG’19 13Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 14Network Based Computing Laboratory

• Near-constant MPI and OpenSHMEM
initialization time at any process count

• 10x and 30x improvement in startup time
of MPI and OpenSHMEM respectively at
16,384 processes

• Memory consumption reduced for remote
endpoint information by O(processes per
node)

• 1GB Memory saved per node with 1M
processes and 16 processes per node

Towards High Performance and Scalable Startup at Exascale

P M

O

Job Startup Performance

M
em

or
y

Re
qu

ire
d

to
 S

to
re

En

dp
oi

nt
 In

fo
rm

at
io

n
a b c d

eP

M

PGAS – State of the art

MPI – State of the art

O PGAS/MPI – Optimized

PMIX_Ring

PMIX_Ibarrier

PMIX_Iallgather

Shmem based PMI

b

c

d

e

a
On-demand
Connection

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K
Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st
European MPI Users' Group Meeting (EuroMPI/Asia ’14)

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

SHMEMPMI – Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda,
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16)

a

b

c d

e

MUG’19 15Network Based Computing Laboratory

Startup Performance on KNL + Omni-Path

0

50

100

150

200

M
PI

_I
ni

t (
Se

co
nd

s)

Number of Processes

MPI_Init - TACC Stampede-KNL

Intel MPI 2018 beta

MVAPICH2 2.3a

0

5

10

15

20

25

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

MPI_Init & Hello World - Oakforest-PACS

Hello World (MVAPICH2-2.3a)

MPI_Init (MVAPICH2-2.3a)

• MPI_Init takes 51 seconds on 231,956 processes on 3,624 KNL nodes (Stampede – Full scale)
• 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)
• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
• All numbers reported with 64 processes per node

5.8s

21s

51s

8.8x

New designs available in MVAPICH2-2.3a and as patch for SLURM-15.08.8 and SLURM-16.05.1

MUG’19 16Network Based Computing Laboratory

Startup Performance on TACC Frontera

• MPI_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
• All numbers reported with 56 processes per node

4.5s
3.9s

New designs available in MVAPICH2-2.3.2

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

56 112 224 448 896 1792 3584 7168 14336 28672 57344

Ti
m

e
Ta

ke
n

(M
ill

is
ec

on
ds

)

Number of Processes

MPI_Init on Frontera

Intel MPI 2019

MVAPICH2 2.3.2

MUG’19 17Network Based Computing Laboratory

On-demand Connection Management for OpenSHMEM+MPI

0

5

10

15

20

25

30

35

32 64 128 256 512 1K 2K 4K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Breakdown of OpenSHMEM Startup

Connection Setup

PMI Exchange

Memory Registration

Shared Memory Setup

Other

0

20

40

60

80

100

120

16 32 64 128 256 512 1K 2K 4K 8K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Performance of OpenSHMEM
Initialization and Hello World
Hello World - Static

Initialization - Static

Hello World - On-demand

Initialization - On-demand

• Static connection establishment wastes memory and takes a lot of time

• On-demand connection management improves OpenSHMEM initialization time by 29.6 times

• Time taken for Hello World reduced by 8.31 times at 8,192 processes

• Available since MVAPICH2-X 2.1rc1

MUG’19 18Network Based Computing Laboratory

Using SLURM as launcher
• Use PMI2

– ./configure --with-pm=slurm --with-pmi=pmi2

– srun --mpi=pmi2 ./a.out

• Use PMI Extensions

– Patch for SLURM available at
http://mvapich.cse.ohio-state.edu/download/

– Patches available for SLURM 15, 16, and 17

– PMI Extensions are automatically detected by
MVAPICH2

Using mpirun_rsh as launcher

• MV2_MT_DEGREE
– degree of the hierarchical tree used by

mpirun_rsh

• MV2_FASTSSH_THRESHOLD
– #nodes beyond which hierarchical-ssh scheme is

used

• MV2_NPROCS_THRESHOLD
– #nodes beyond which file-based communication

is used for hierarchical-ssh during start up

How to Get the Best Startup Performance with MVAPICH2?

• MV2_HOMOGENEOUS_CLUSTER=1 //Set for homogenous clusters

• MV2_ON_DEMAND_UD_INFO_EXCHANGE=1 //Enable UD based address exchange

http://mvapich.cse.ohio-state.edu/download/

MUG’19 19Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 20Network Based Computing Laboratory

One-way Latency: MPI over IB with MVAPICH2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Small Message Latency

Message Size (bytes)

La
te

nc
y

(u
s)

1.11

1.19

1.01
1.15

1.04
1.1

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch
ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

0

20

40

60

80

100

120
TrueScale-QDR

ConnectX-3-FDR

ConnectIB-DualFDR

ConnectX-4-EDR

Omni-Path

ConnectX-6 HDR

Large Message Latency

Message Size (bytes)

La
te

nc
y

(u
s)

MUG’19 21Network Based Computing Laboratory

Bandwidth: MPI over IB with MVAPICH2

0

5000

10000

15000

20000

25000

30000

4 16 64 256 1024 4K 16K 64K 256K 1M

Unidirectional Bandwidth

Ba
nd

w
id

th
 (M

By
te

s/
se

c)

Message Size (bytes)

12,590

3,373

6,356

12,083
12,366

24,532

0

10000

20000

30000

40000

50000

60000

4 16 64 256 1024 4K 16K 64K 256K 1M

TrueScale-QDR

ConnectX-3-FDR

ConnectIB-DualFDR

ConnectX-4-EDR

Omni-Path

ConnectX-6 HDR

Bidirectional Bandwidth

Ba
nd

w
id

th
 (M

By
te

s/
se

c)

Message Size (bytes)

21,227

12,161

21,983

6,228

48,027

24,136

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch
ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

MUG’19 22Network Based Computing Laboratory

Inter-node Point-to-Point Tuning: Eager Thresholds

• Switching Eager to Rendezvous transfer

• Default: Architecture dependent on common platforms, in order to achieve both best performance and
memory footprint

• Threshold can be modified by users to get smooth performance across message sizes

• mpirun_rsh –np 2 –hostfile hostfile MV2_IBA_EAGER_THRESHOLD=32K a.out

• Memory footprint can increase along with eager threshold

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1K 2K 4k 8k 16k 32k

La
te

nc
y

(u
s)

Message Size (Bytes)

Eager Rendezvous

Eager threshold

Eager vs Rendezvous

0
2
4
6
8

10
12
14
16
18

0 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K64K

La
te

nc
y

(u
s)

Message Size (Bytes)

eager_th=1K
eager_th=2K
eager_th=4K
eager_th=8K
eager_th=16K
eager_th=32K

Impact of Eager Threshold

MUG’19 23Network Based Computing Laboratory

0

0.5

1

0 1 2 4 8 16 32 64 128 256 512 1K 2K

La
te

nc
y

(u
s)

MVAPICH2-2.3.1

SpectrumMPI-2019.02.07

Intra-node Point-to-Point Performance on OpenPower

Platform: Two nodes of OpenPOWER (POWER9-ppc64le) CPU using Mellanox EDR (MT4121) HCA

Intra-Socket Small Message Latency Intra-Socket Large Message Latency

Intra-Socket Bi-directional BandwidthIntra-Socket Bandwidth

0.22us
0

20

40

60

80

100

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

La
te

nc
y

(u
s)

MVAPICH2-2.3.1

SpectrumMPI-2019.02.07

0

10000

20000

30000

40000

1 8 64 512 4K 32K 256K 2M

Ba
nd

w
id

th
 (M

B/
s) MVAPICH2-2.3.1

SpectrumMPI-2019.02.07

0

20000

40000

1 8 64 512 4K 32K 256K 2M

Bi
-B

an
dw

id
th

 (M
B/

s) MVAPICH2-2.3.1

SpectrumMPI-2019.02.07

MUG’19 24Network Based Computing Laboratory

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
s)

MVAPICH2-2.3

Intra-node Point-to-point Performance on ARM Cortex-A72

0

2000

4000

6000

8000

10000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Ba
nd

w
id

th
 (M

B/
s) MVAPICH2-2.3

0
2000
4000
6000
8000

10000
12000
14000
16000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Bi
di

re
ct

io
na

l B
an

dw
id

th MVAPICH2-2.3

Platform: ARM Cortex A72 (aarch64) processor with 64 cores dual-socket CPU. Each socket contains 32 cores.

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

0.27 micro-second
(1 bytes)

0

100

200

300

400

500

600

700

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

MVAPICH2-2.3

MUG’19 25Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 26Network Based Computing Laboratory

Hybrid (UD/RC/XRC) Mode in MVAPICH2

• Both UD and RC/XRC have benefits

• Hybrid for the best of both

• Enabled by configuring MVAPICH2 with the
–enable-hybrid

• Available since MVAPICH2 1.7 as integrated
interface

0

2

4

6

128 256 512 1024

Ti
m

e
(u

s)

Number of Processes

UD Hybrid RC

26% 40% 30%38%

• Refer to Running with Hybrid UD-RC/XRC section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-690006.11

Parameter Significance Default Notes

MV2_USE_UD_HYBRID • Enable / Disable use of UD transport
in Hybrid mode

Enabled • Always Enable

MV2_HYBRID_ENABLE_THRESHOLD_SIZE • Job size in number of processes beyond which
hybrid mode will be enabled

1024 • Uses RC/XRC connection until
job size < threshold

MV2_HYBRID_MAX_RC_CONN • Maximum number of RC or XRC
connections created per process

• Limits the amount of connection memory

64 • Prevents HCA QP cache
thrashing

Performance with HPCC Random Ring

MUG’19 27Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 28Network Based Computing Laboratory

MVAPICH2 Multi-Rail Design

• What is a rail?
– HCA, Port, Queue Pair

• Automatically detects and uses all active HCAs in a system
– Automatically handles heterogeneity

• Supports multiple rail usage policies
– Rail Sharing – Processes share all available rails

– Rail Binding – Specific processes are bound to specific rails

MUG’19 29Network Based Computing Laboratory

Performance Tuning on Multi-Rail Clusters

0
1
2
3
4
5
6
7

M
es

sa
ge

 R
at

e
(M

ill
io

ns
 o

f M
es

sa
ge

s /
 S

ec
)

Message Size (Bytes)

Impact of Default Rail Binding on Message Rate

Single-Rail
Dual-Rail

0
1
2
3
4
5
6
7
8

M
es

sa
ge

 R
at

e
(M

ill
io

ns
 o

f M
es

sa
ge

s/
se

c)

Message Size (Bytes)

Impact of Advanced Multi-rail Tuning on Message
Rate

Use First
Round Robin
Scatter
Bunch

Parameter Significance Default Notes

MV2_IBA_HCA • Manually set the HCA to be used Unset • To get names of HCA
ibstat | grep “^CA”

MV2_DEFAULT_PORT • Select the port to use on a active multi port HCA 0 • Set to use different port

MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD • Threshold beyond which striping will take place 16 Kbyte

MV2_RAIL_SHARING_POLICY • Choose multi-rail rail sharing / binding policy
• For Rail Sharing set to USE_FIRST or ROUND_ROBIN
• Set to FIXED_MAPPING for advanced rail binding options

Rail Binding in
Round Robin

mode

• Advanced tuning can
result in better
performance

MV2_PROCESS_TO_RAIL_MAPPING • Determines how HCAs will be mapped to the rails BUNCH • Options: SCATTER
and custom list

• Refer to Enhanced design for Multiple-Rail section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-700006.12

0
1000
2000
3000
4000
5000
6000
7000

Ba
nd

w
id

th
 (M

B/
se

c)

Message Size (Bytes)

Impact of Default Message Striping on Bandwidth

Single-Rail

Dual-Rail

Two 24-core Magny Cours nodes with two Mellanox ConnectX QDR adapters
Six pairs with OSU Multi-Pair bandwidth and messaging rate benchmark

98% 130%

7%

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-700006.12

MUG’19 30Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 31Network Based Computing Laboratory

Process Mapping support in MVAPICH2

Process-Mapping support in
MVAPICH2

(available since v1.4)

bunch
(Default)

scatter

core
(Default)

socket numanode

Preset Binding Policies User-defined binding

MPI rank-to-core binding

MVAPICH2 detects processor architecture at job-launch

Policy

Granularity

hybrid

MUG’19 32Network Based Computing Laboratory

Preset Process-binding Policies – Bunch

• “Core” level “Bunch” mapping (Default)
– MV2_CPU_BINDING_POLICY=bunch

• “Socket/Numanode” level “Bunch” mapping
– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=bunch

MUG’19 33Network Based Computing Laboratory

Preset Process-binding Policies – Scatter

• “Core” level “Scatter” mapping
– MV2_CPU_BINDING_POLICY=scatter

• “Socket/Numanode” level “Scatter” mapping
– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=scatter

MUG’19 34Network Based Computing Laboratory

• A new process binding policy – “hybrid”
– MV2_CPU_BINDING_POLICY = hybrid

• A new environment variable for co-locating Threads with MPI Processes
– MV2_THREADS_PER_PROCESS = k

– Automatically set to OMP_NUM_THREADS if OpenMP is being used

– Provides a hint to the MPI runtime to spare resources for application threads.

• New variable for threads bindings with respect to parent process and architecture
– MV2_HYBRID_BINDING_POLICY= {bunch|scatter|linear|compact|spread|numa}

• Linear – binds MPI ranks and OpenMP threads sequentially (one after the other)

– Recommended to be used on non-hyper threaded systems with MPI+OpenMP

• Compact – binds MPI rank to physical-core and locates respective OpenMP threads on hardware threads

– Recommended to be used on multi-/many-cores e.g., KNL, POWER8, and hyper-threaded Xeon, etc.

Process and thread binding policies in hybrid MPI+Threads

MUG’19 35Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads)
• MPI Processes = 4, OpenMP Threads per Process = 4

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_THREADS_PER_PROCESS = 4

• MV2_THREADS_BINDING_POLICY = compact

Core0

HWT HWT

HWT

Core2

HWT HWT

HWT

Core1

HWT HWT

HWT

Core3

HWT HWT

HWT

Core0

HWT HWT

HWT

HWT HWT

HWT

Core1

HWT HWT

HWT

Core3

HWT HWT

HWT

Rank0 Rank1

Rank2 Rank3

Core2

• Detects hardware-threads support in architecture

• Assigns MPI ranks to physical cores and respective OpenMP Threads to HW threads

MUG’19 36Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads) ---- Cont’d
• MPI Processes = 4, OpenMP Threads per Process = 4

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_THREADS_PER_PROCESS = 4

• MV2_THREADS_BINDING_POLICY = linear

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

• MPI Rank-0 with its 4-OpenMP threads gets bound on Core-0 through Core-3, and so on

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

Rank0 Rank1

Rank3Rank2

MUG’19 37Network Based Computing Laboratory

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

Core0

Core2 Core3

Core1

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

rank1

numa node 0

numa node 1

rank0

numa node 0

numa node 1

NUMA

numa node 3, 4, …, 7 numa node 3, 4, …, 7
rank2 rank10

…

rank8

rank9

Core8

Binding Example in Hybrid (MPI+Threads) ---- Cont’d
• MPI Processes = 16

• Example: AMD EPYC 7551 processor with 8 NUMA domains

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_HYBRID_BINDING_POLICY = numa

MUG’19 38Network Based Computing Laboratory

User-Defined Process Mapping
• User has complete-control over process-mapping

• To run 4 processes on cores 0, 1, 4, 5:
– $ mpirun_rsh -np 4 -hostfile hosts MV2_CPU_MAPPING=0:1:4:5 ./a.out

• Use ‘,’ or ‘-’ to bind to a set of cores:
– $mpirun_rsh -np 64 -hostfile hosts MV2_CPU_MAPPING=0,2-4:1:5:6 ./a.out

• Is process binding working as expected?
– MV2_SHOW_CPU_BINDING=1

• Display CPU binding information

• Launcher independent

• Example

– MV2_SHOW_CPU_BINDING=1 MV2_CPU_BINDING_POLICY=scatter

-------------CPU AFFINITY-------------

RANK:0 CPU_SET: 0

RANK:1 CPU_SET: 8

• Refer to Running with Efficient CPU (Core) Mapping section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3rc1-userguide.html#x1-600006.5

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-600006.5

MUG’19 39Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Overview of MVAPICH2 Features

MUG’19 40Network Based Computing Laboratory

Collective Communication in MVAPICH2

Run-time flags:
All shared-memory based collectives : MV2_USE_SHMEM_COLL (Default: ON)
Hardware Mcast-based collectives : MV2_USE_MCAST (Default : OFF)
CMA and XPMEM-based collectives are in MVAPICH2-X

Multi/Many-Core
Aware Designs

Blocking and Non-Blocking
Collective Algorithms in MV2

Conventional
(Flat)

Inter-Node
Communication

Intra-Node
Communication

Point to Point
(SHMEM,

LiMIC, CMA*,
XPMEM*)

Direct Shared
Memory

Direct Kernel
Assisted
(CMA*,

XPMEM*, LiMIC)

Point to
Point

Hardware
Multicast SHARP RDMA

Designed for Performance & Overlap

MUG’19 41Network Based Computing Laboratory

Hardware Multicast-aware MPI_Bcast on TACC Stampede

0
5

10
15
20
25
30
35
40

2 8 32 128 512

La
te

nc
y

 (u
s)

Message Size (Bytes)

Small Messages (102,400 Cores)
Default
Multicast

0
50

100
150
200
250
300
350
400
450

2K 8K 32K 128K

La
te

nc
y

 (u
s)

Message Size (Bytes)

Large Messages (102,400 Cores)

Default
Multicast

0
5

10
15
20
25
30

La
te

nc
y

(u
s)

Number of Nodes

16 Byte Message

Default
Multicast

0

50

100

150

200

La
te

nc
y

(u
s)

Number of Nodes

32 KByte Message

Default
Multicast

• MCAST-based designs improve latency of MPI_Bcast by up to 85%

• Use MV2_USE_MCAST=1 to enable MCAST-based designs

80%

85%

MUG’19 42Network Based Computing Laboratory

MPI_Scatter - Benefits of using Hardware-Mcast

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16

La
te

nc
y

(u
se

c)

Message Length (Bytes)

512 Processes
Scatter-Default Scatter-Mcast

0

5

10

15

20

25

30

1 2 4 8 16

La
te

nc
y

(u
se

c)

Message Length (Bytes)

1,024 Processes

• Enabling MCAST-based designs for MPI_Scatter improves small message up to 75%

57%
75%

Parameter Description Default
MV2_USE_MCAST = 1 Enables hardware Multicast features Disabled
--enable-mcast Configure flag to enable Enabled

MUG’19 43Network Based Computing Laboratory

 Management and execution of MPI operations in the network
by using SHArP
 Manipulation of data while it is being transferred in the switch

network

 SHArP provides an abstraction to realize the reduction
operation
 Defines Aggregation Nodes (AN), Aggregation Tree, and Aggregation

Groups

 AN logic is implemented as an InfiniBand Target Channel Adapter
(TCA) integrated into the switch ASIC *

 Uses RC for communication between ANs and between AN and hosts
in the Aggregation Tree *

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Physical Network Topology*

Logical SHArP Tree** Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’19 44Network Based Computing Laboratory

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(4,28) (8,28) (16,28)
La

te
nc

y
(s

ec
on

ds
)
(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP

Benefits of SHARP Allreduce at Application Level

12%
Avg DDOT Allreduce time of HPCG

SHARP support available since MVAPICH2 2.3a

Parameter Description Default
MV2_ENABLE_SHARP=1 Enables SHARP-based collectives Disabled
--enable-sharp Configure flag to enable SHARP Disabled

• Refer to Running Collectives with Hardware based SHARP support section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html#x1-990006.26

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html#x1-990006.26

MUG’19 45Network Based Computing Laboratory

Problems with Blocking Collective Operations
Application

Process
Application

Process
Application

Process
Application

Process

Computation

Communication

• Communication time cannot be used for compute
– No overlap of computation and communication

– Inefficient

MUG’19 46Network Based Computing Laboratory

• Application processes schedule collective operation

• Check periodically if operation is complete

• Overlap of computation and communication => Better Performance

• Catch: Who will progress communication

Concept of Non-blocking Collectives
Application

Process
Application

Process
Application

Process
Application

Process

Computation

Communication

Communication
Support Entity

Communication
Support Entity

Communication
Support Entity

Communication
Support Entity

Schedule
Operation

Schedule
Operation

Schedule
Operation

Schedule
Operation

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

MUG’19 47Network Based Computing Laboratory

• Enables overlap of computation with communication

• Non-blocking calls do not match blocking collective calls
– MPI may use different algorithms for blocking and non-blocking collectives

– Blocking collectives: Optimized for latency

– Non-blocking collectives: Optimized for overlap

• A process calling a NBC operation
– Schedules collective operation and immediately returns

– Executes application computation code

– Waits for the end of the collective

• The communication progress by
– Application code through MPI_Test

– Network adapter (HCA) with hardware support

– Dedicated processes / thread in MPI library

• There is a non-blocking equivalent for each blocking operation
– Has an “I” in the name

• MPI_Bcast -> MPI_Ibcast; MPI_Reduce -> MPI_Ireduce

Non-blocking Collective (NBC) Operations

MUG’19 48Network Based Computing Laboratory

void main()

{

MPI_Init()

…..

MPI_Ialltoall(…)

Computation that does not depend on result of Alltoall

MPI_Test(for Ialltoall) /* Check if complete (non-blocking) */

Computation that does not depend on result of Alltoall

MPI_Wait(for Ialltoall) /* Wait till complete (Blocking) */

…

MPI_Finalize()

}

How do I write applications with NBC?

MUG’19 49Network Based Computing Laboratory

P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives

• Weak scaling experiments; problem size increases with job size

• RDMA-Aware delivers 19% improvement over Default @ 8,192 procs

• Default-Thread exhibits worst performance
– Possibly because threads steal CPU cycles from P3DFFT

– Do not consider for large scale experiments

0

2

4

6

8

10

12

14

128 256 512 1K 2K 4K 8K

CP
U

 T
im

e
Pe

r L
oo

p
(S

ec
on

ds
)

Number of Processes

Large Scale Runs

Default RDMA-Aware

0
2
4
6
8

10
12
14
16

128 256 512

CP
U

 T
im

e
Pe

r L
oo

p
(S

ec
on

ds
)

Number of Processes

Small Scale Runs

Default RDMA-Aware Default-Thread 19%

Will be available in future

MUG’19 50Network Based Computing Laboratory

0
1
2
3
4
5
6
7
8
9

4 8 16 32 64 128

Pu
re

 C
om

m
un

ic
at

io
n

La
te

nc
y

(u
s)

Message Size (Bytes)

1 PPN*, 8 Nodes
MVAPICH2

MVAPICH2-SHArP

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64 128

Co
m

m
un

ic
at

io
n-

Co
m

pu
ta

tio
n

 O
ve

rla
p

(%
)

Message Size (Bytes)

1 PPN, 8 NodesMVAPICH2 MVAPICH2-SHArP

Evaluation of SHArP based Non Blocking Allreduce

MPI_Iallreduce Benchmark

2.3x

*PPN: Processes Per Node

• Complete offload of Allreduce collective operation to Switch helps to have
much higher overlap of communication and computation

Low
er is Better

Hi
gh

er
 is

 B
et

te
r

Available since MVAPICH2 2.3a

MUG’19 51Network Based Computing Laboratory

• Job start-up

• Point-to-point Inter-node Protocol

• Transport Type Selection

• Multi-rail

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

• MPI_T Support

Presentation Overview

MUG’19 52Network Based Computing Laboratory

MPI Tools Information Interface (MPI_T)

• Introduced in MPI 3.0 standard to expose internals of MPI to tools and applications

• Generalized interface – no defined variables in the standard

• Variables can differ between

- MPI implementations

- Compilations of same MPI library (production vs debug)

- Executions of the same application/MPI library

- There could be no variables provided

• Control Variables (CVARS) and Performance Variables (PVARS)

• More about the interface: mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

MUG’19 53Network Based Computing Laboratory

MPI_T_init_thread(..)

MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)

if (msg_size < MV2_EAGER_THRESHOLD + 1KB)

MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)

MPI_Send(..)

MPI_T_finalize(..)

Co-designing Applications to use MPI-T

Example Pseudo-code: Optimizing the eager limit dynamically:

MUG’19 54Network Based Computing Laboratory

● Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of
performance and control variables

● Get and display MPI Performance Variables (PVARs) made available by the runtime
in TAU

● Control the runtime’s behavior via MPI Control Variables (CVARs)
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ, MPIR_CVAR_VBUF_POOL_SIZE,
MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for
uninstrumented applications

● S. Ramesh, A. Maheo, S. Shende, A. Malony, H. Subramoni, and D. K. Panda, MPI
Performance Engineering with the MPI Tool Interface: the Integration of MVAPICH
and TAU, EuroMPI/USA ‘17, Best Paper Finalist

Performance Engineering Applications using MVAPICH2 and TAU

VBUF usage without CVAR based tuning as displayed by ParaProf VBUF usage with CVAR based tuning as displayed by ParaProf

Available in MVAPICH2

MUG’19 55Network Based Computing Laboratory

Enhancing MPI_T Support
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ
■ Controls the message size up to which “inline” transmission of data is

supported by MVAPICH2
○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs)
MVAPICH2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
■ Controls the number of VBUFs MVAPICH2 allocates when there are no

more free VBUFs available
○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode
for uninstrumented applications

MUG’19 56Network Based Computing Laboratory

PVARs Exposed by MVAPICH2

Courtesy: The TAU Team

MUG’19 57Network Based Computing Laboratory

CVARs Exposed by MVAPICH2

Courtesy: The TAU Team

MUG’19 58Network Based Computing Laboratory

Using MVAPICH2 and TAU

● To set CVARs or read PVARs using TAU for an uninstrumented binary:
% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],
MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000
% export PATH=/path/to/tau/x86_64/bin:$PATH
% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out
% paraprof

Courtesy: The TAU Team

MUG’19 59Network Based Computing Laboratory

VBUF usage without CVARs

Courtesy: The TAU Team

MUG’19 60Network Based Computing Laboratory

VBUF Memory Usage Without and With CVAR

Courtesy: The TAU Team

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

Without CVAR With CVAR

MUG’19 61Network Based Computing Laboratory

• Released on 08/16/2019

• Major Features and Enhancements

– Based on MVAPICH2-2.3.2

– Enhanced tuning for point-to-point and collective operations

– Targeted for Azure HB & HC virtual machine instances

– Flexibility for 'one-click' deployment

– Tested with Azure HB & HC VM instances

MVAPICH2-Azure 2.3.2

MUG’19 62Network Based Computing Laboratory

Performance of Radix

0

5

10

15

20

25

30

16(1x16) 32(1x32) 44(1X44) 88(2X44) 176(4X44) 352(8x44)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Processes (Nodes X PPN)

Total Execution Time on HC (Lower is better)

MVAPICH2-X

HPCx 3x faster

0

5

10

15

20

25

60(1X60) 120(2X60) 240(4X60)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Processes (Nodes X PPN)

Total Execution Time on HB (Lower is better)

MVAPICH2-X HPCx

38% faster

MUG’19 63Network Based Computing Laboratory

Performance of FDS (HC)

0
1
2
3
4
5
6
7
8
9

10

16(1x16) 32(1x32) 44(1X44)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Processes (Nodes X PPN)

Single Node
Total Execution Time (Lower is better)

MVAPICH2-X HPCx

0

100

200

300

400

500

600

88(2X44) 176(4X44)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Processes (Nodes X PPN)

Multi-Node
Total Execution Time (Lower is better)

MVAPICH2-X HPCx

Part of input parameter: MESH IJK=5,5,5, XB=-1.0,0.0,-1.0,0.0,0.0,1.0, MULT_ID='mesh array'

1.11x better

MUG’19 64Network Based Computing Laboratory

MVAPICH2 Software Family
Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’19 65Network Based Computing Laboratory

MVAPICH2-X for MPI and Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI
– Possible deadlock if both runtimes are not progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF
– Available with since 2012 (starting with MVAPICH2-X 1.9)
– http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

MUG’19 66Network Based Computing Laboratory

• Released on 03/01/2019

• Major Features and Enhancements

– MPI Features

– Based on MVAPICH2 2.3.1

• OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

– MPI (Advanced) Features

• Improved performance of large message communication

• Support for advanced co-operative (COOP) rendezvous protocols in SMP
channel

– OFA-IB-CH3 and OFA-IB-RoCE interfaces

• Support for RGET, RPUT, and COOP protocols for CMA and XPMEM

– OFA-IB-CH3 and OFA-IB-RoCE interfaces

• Support for load balanced and dynamic rendezvous protocol selection

– OFA-IB-CH3 and OFA-IB-RoCE interfaces

• Support for XPMEM-based MPI collective operations (Broadcast, Gather,
Scatter, Allgather)

– OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

• Extend support for XPMEM-based MPI collective operations (Reduce and
All-Reduce for PSM-CH3 and PSM2-CH3 interfaces

MVAPICH2-X 2.3rc2

• Improved connection establishment for DC transport

– OFA-IB-CH3 interface

• Add improved Alltoallv algorithm for small messages

• OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

– OpenSHMEM Features

• Support for XPMEM-based collective operations (Broadcast, Collect,
Reduce_all, Reduce, Scatter, Gather)

– UPC Features

• Support for XPMEM-based collective operations (Broadcast, Collect,
Scatter, Gather)

– UPC++ Features

• Support for XPMEM-based collective operations (Broadcast, Collect,
Scatter, Gather)

– Unified Runtime Features

• Based on MVAPICH2 2.3.1 (OFA-IB-CH3 interface). All the runtime
features enabled by default in OFA-IB-CH3 and OFA-IB-RoCE interface
of MVAPICH2 2.3.1 are available in MVAPICH2-X 2.3rc2

MUG’19 67Network Based Computing Laboratory

MVAPICH2-X Feature Table

• * indicates disabled by default at runtime. Must use appropriate environment variable in MVAPICH2-X user guide to enable it.
• + indicates features only tested with InfiniBand network

Features for InfiniBand (OFA-IB-CH3) and RoCE (OFA-RoCE-CH3) Basic Basic-XPMEM Intermediate Advanced

Architecture Specific Point-to-point and Collective Optimizations
for x86, OpenPOWER, and ARM

Optimized Support for PGAS models
(UPC, UPC++, OpenSHMEM, CAF) and Hybrid
MPI+PGAS models

CMA-Aware Collectives

Optimized Asynchronous Progress*

InfiniBand Hardware Multicast-based MPI_Bcast*+

OSU InfiniBand Network Analysis and Monitoring (INAM)*+

XPMEM-based Point-to-Point and Collectives

Direct Connected (DC) Transport Protocol*+

User mode Memory Registration (UMR)*+

On Demand Paging (ODP)*+

Core-direct based Collective Offload*+

SHARP-based Collective Offload*+

MUG’19 68Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 69Network Based Computing Laboratory

Minimizing Memory Footprint by Direct Connect (DC) Transport

N
od

e
0 P1P0

Node 1

P3

P2
Node 3

P7

P6

N
od

e
2 P5P4

IB
Network

• Constant connection cost (One QP for any peer)

• Full Feature Set (RDMA, Atomics etc)

• Separate objects for send (DC Initiator) and receive (DC
Target)

– DC Target identified by “DCT Number”
– Messages routed with (DCT Number, LID)
– Requires same “DC Key” to enable communication

• Available since MVAPICH2-X 2.2a

0

0.2

0.4

0.6

0.8

1

1.2

160 320 620

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Number of Processes

NAMD - Apoa1: Large data set

RC DC-Pool UD XRC

10
22

47
97

1 1 1
2

10 10 10 10

1 1

3
5

1

10

100

80 160 320 640

Co
nn

ec
tio

n
M

em
or

y
(K

B)

Number of Processes

Memory Footprint for Alltoall

RC DC-Pool UD XRC

H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty and D. K. Panda, Designing MPI Library with Dynamic Connected Transport (DCT)
of InfiniBand : Early Experiences. IEEE International Supercomputing Conference (ISC ’14)

MUG’19 70Network Based Computing Laboratory

Impact of DC Transport Protocol on Neuron

• Up to 76% benefits over MVAPICH2 for
Neuron using Direct Connected transport
protocol at scale

– VERSION 7.6.2 master (f5a1284) 2018-08-15

• Numbers taken on bbpv2.epfl.ch
– Knights Landing nodes with 64 ppn
– ./x86_64/special -mpi -c stop_time=2000 -c is_split=1

parinit.hoc
– Used “runtime” reported by execution to measure

performance

• Environment variables used
– MV2_USE_DC=1
– MV2_NUM_DC_TGT=64
– MV2_SMALL_MSG_DC_POOL=96
– MV2_LARGE_MSG_DC_POOL=96
– MV2_USE_RDMA_CM=0

0
200
400
600
800

1000
1200
1400
1600

512 1024 2048 4096

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

MVAPICH2 MVAPICH2-X

Neuron with YuEtAl2012

10%

76%

39%

Overhead of RC protocol for
connection establishment and

communication Available from MVAPICH2-X 2.3rc2 onwards

MUG’19 71Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 72Network Based Computing Laboratory

Existing Intra-Node Communication Mechanism in MPI

Shared Memory – SHMEM

Requires two copies
No system call overhead

Better for Small Messages

Kernel-Assisted Copy

System call overhead
Requires single(a.k.a “zero”) copy

Better for Large Messages
(CMA, KNEM, LiMIC)

MPI Sender

MPI Receiver

Shared MMAP
Region

map
pages

Kernel
address-space

MPI Sender

MPI Receiver

MUG’19 73Network Based Computing Laboratory

• XPMEM (https://github.com/hjelmn/xpmem) --- “Cross-partition Memory”
– Mechanisms for a process to “attach” to the virtual memory segment of a remote process
– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment
– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”
• The receiver process can directly read/write on the remote process’ memory

Direct LD/ST

Sender’s
Address-space

Receiver’s
Address Space

Create Shared
address-space

segment

Sender’s
Address-space

Receiver’s
Address Space

xpmem_make()
xpmem_get()
xpmem_attach()

Shared Address-space based Communication

https://github.com/hjelmn/xpmem

MUG’19 74Network Based Computing Laboratory

MPI Level Point-to-Point Latency

• Intel Xeon CPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

• Used osu_latency from OSU Microbenchmarks v5.5

MUG’19 75Network Based Computing Laboratory

MPI Level Intra-socket Point-to-Point Bandwidth

• Intel Xeon CPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

• Used osu_bw and osu_bibw from OSU Microbenchmarks v5.5

MUG’19 76Network Based Computing Laboratory

MPI Level Inter-Socket Point-to-Point Bandwidth

• Intel XeonCPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

• Used osu_bw and osu_bibw from OSU Microbenchmarks v5.5

MUG’19 77Network Based Computing Laboratory

Cooperative Rendezvous Protocols

Platform: 2x14 core Broadwell 2680 (2.4 GHz)
Mellanox EDR ConnectX-5 (100 GBps)

Baseline: MVAPICH2X-2.3rc1, Open MPI v3.1.0
Cooperative Rendezvous Protocols for Improved Performance and Overlap
S. Chakraborty, M. Bayatpour,, J Hashmi, H. Subramoni, and DK Panda,
SC ‘18 (Best Student Paper Award Finalist)

19%
16% 10%

• Use both sender and receiver CPUs to progress communication concurrently

• Dynamically select rendezvous protocol based on communication primitives and sender/receiver
availability (load balancing)

• Up to 2x improvement in large message latency and bandwidth

• Up to 19% improvement for Graph500 at 1536 processes

-100
100
300
500
700
900

1100
1300
1500

28 56 112 224 448 896 1536

Ti
m

e
(S

ec
on

ds
)

Number of Processes

Graph500

MVAPICH2

Open MPI

Proposed

0

100

200

300

400

500

28 56 112 224 448 896 1536

Ti
m

e
(S

ec
on

ds
)

Number of Processes

CoMD

MVAPICH2

Open MPI

Proposed

0

20

40

60

80

100

28 56 112 224 448 896 1536

Ti
m

e
(S

ec
on

ds
)

Number of Processes

MiniGhost

MVAPICH2

Open MPI

Proposed

Available in MVAPICH2-X 2.3rc2

MUG’19 78Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 79Network Based Computing Laboratory

Optimized CMA-based Collectives for Large Messages

1

10

100

1000

10000

100000

1000000
1K 2K 4K 8K 16

K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size

KNL (2 Nodes, 128 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

La
te

nc
y

(u
s)

1

10

100

1000

10000

100000

1000000

Message Size

KNL (4 Nodes, 256 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA
1

10

100

1000

10000

100000

1000000

Message Size

KNL (8 Nodes, 512 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

• Significant improvement over existing implementation for Scatter/Gather with
1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)

• New two-level algorithms for better scalability
• Improved performance for other collectives (Bcast, Allgather, and Alltoall)

~ 2.5x
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI
Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

Performance of MPI_Gather on KNL nodes (64PPN)

Available since MVAPICH2-X 2.3b

MUG’19 80Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 81Network Based Computing Laboratory

0

5000

10000

15000

20000

25000

30000

224 448 896

Pe
rf

or
m

an
ce

 in
 G

FL
O

PS

Number of Processes

MVAPICH2 Async MVAPICH2 Default IMPI 2019 Default

0

1

2

3

4

5

6

7

8

9

112 224 448

Ti
m

e
 p

er
 lo

op
 in

 se
co

nd
s

Number of Processes

MVAPICH2 Async MVAPICH2 Default IMPI 2019 Default IMPI 2019 Async

Benefits of the New Asynchronous Progress Design: Broadwell +
InfiniBand

Up to 33% performance improvement in P3DFFT application with 448 processes
Up to 29% performance improvement in HPL application with 896 processes

Memory Consumption = 69%

P3DFFT High Performance Linpack (HPL)

26%

27% Lower is better Higher is better

A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and D.K. Panda,
“Efficient design for MPI Asynchronous Progress without Dedicated Resources”, Parallel Computing 2019

Available since MVAPICH2-X 2.3rc1

PPN=28

33%

29%

12%

PPN=28

8%

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’19 82Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 83Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size

MVAPICH2-2.3b
IMPI-2017v1.132
MVAPICH2-X-2.3rc1

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

73.2

1.8X

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

Message Size

MVAPICH2-2.3b

IMPI-2017v1.132

MVAPICH2-2.3rc1

OSU_Reduce (Broadwell 256 procs)

4X

36.1

37.9

16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction
Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Available since MVAPICH2-X 2.3rc1

MUG’19 84Network Based Computing Laboratory

Reduction Collectives on IBM OpenPOWER

MPI_Allreduce

• Two POWER8 dual-socket nodes each with 20 ppn

• Up to 2X improvement for Allreduce and 3X improvement for Reduce at 4MB message

• Used osu_reduce and osu_allreduce from OSU Microbenchmarks v5.5

MPI_Reduce

0

100

200

4K 8K 16K 32K 64K

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

0

1000

2000

3000

4000

128K 256K 512K 1M 2M

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

0

200

400

600

800

4K 8K 16K 32K 64K 128K 256K

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

0

10000

20000

30000

40000

512K 1M 2M 4M 8M 16M

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

La
te

nc
y

(u
s)

La
te

nc
y

(u
s)

3.7X
2X

5X
3X

MUG’19 85Network Based Computing Laboratory

Application Level Benefits of XPMEM-based Designs

MiniAMR (dual-socket, ppn=16)

• Intel XeonCPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)
• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce
• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for MiniAMR application kernel

0
100
200
300
400
500
600
700
800

28 56 112 224

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

Intel MPI
MVAPICH2
MVAPICH2-XPMEM

CNTK AlexNet Training
(B.S=default, iteration=50, ppn=28)

0

10

20

30

40

50

60

70

16 32 64 128 256

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

Intel MPI

MVAPICH2

MVAPICH2-XPMEM20%

9%

27%

15%

MUG’19 86Network Based Computing Laboratory

0

20

40

60

10 20 40 60

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

MVAPICH-2.3rc1

MVAPICH2-XPMEM

Impact of XPMEM-based Designs on MiniAMR

• Two POWER8 dual-socket nodes
each with 20 ppn

• MiniAMR application execution time
comparing MVAPICH2-2.3rc1 and
optimized All-Reduce design
– MiniAMR application for weak-

scaling workload on up to three
POWER8 nodes.

– Up to 45% improvement over
MVAPICH2-2.3rc1 in mesh-
refinement time

45%
41%

36%
42%

OpenPOWER (weak-scaling, 3 nodes, ppn=20)

MUG’19 87Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 88Network Based Computing Laboratory

Performance of Non-Reduction Collectives with XPMEM

• 28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

• Used osu_bcast from OSU Microbenchmarks v5.5

1

10

100

1000

10000
4K 8K 16

K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

Broadcast
Intel MPI 2018
OpenMPI 3.0.1
MV2X-2.3rc1 (CMA Coll)
MV2X-2.3rc2 (XPMEM Coll)

5X over
OpenMPI

1

10

100

1000

10000

100000

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

Gather
Intel MPI 2018
OpenMPI 3.0.1
MV2X-2.3rc1 (CMA Coll)
MV2X-2.3rc2 (XPMEM Coll)

3X over
OpenMPI

MUG’19 89Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 90Network Based Computing Laboratory

Efficient Zero-copy MPI Datatypes for Emerging Architectures

• New designs for efficient zero-copy based MPI derived datatype processing
• Efficient schemes mitigate datatype translation, packing, and exchange overheads
• Demonstrated benefits over prevalent MPI libraries for various application kernels
• To be available in the upcoming MVAPICH2-X release

0.1

1

10

100

2 4 8 16 28Lo
gs

ca
le

 L
at

en
cy

 (m
illi

se
co

nd
s)

No. of Processes

MVAPICH2X-2.3
IMPI 2018
IMPI 2019
MVAPICH2X-Opt

5X

0.1

1

10

100

1000

Grid Dimensions (x, y, z, t)

MVAPICH2X-2.3
IMPI 2018
MVAPICH2X-Opt

19X

0.01

0.1

1

10

Grid Dimensions (x, y, z, t)

MVAPICH2X-2.3

IMPI 2018

MVAPICH2X-Opt
3X

3D-Stencil Datatype Kernel on
Broadwell (2x14 core)

MILC Datatype Kernel on KNL 7250
in Flat-Quadrant Mode (64-core)

NAS-MG Datatype Kernel on
OpenPOWER (20-core)

MUG’19 91Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 92Network Based Computing Laboratory

Impact of Optimized Small Message MPI_Alltoallv Algorithm

• Optimized designs in MVAPICH2-X offer significantly improved performance for small message
MPI_Alltoallv

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-X HPE-MPI

~5X better

• Up to 5X benefits over HPE-MPI using
optimized using optimized Alltoallv
algorithm and Direct Connected transport
protocol

• Numbers taken on bbpv2.epfl.ch
– 96 KNL nodes with 64 ppn (6,144 processes)
– osu_alltoallv from OSU Micro Benchmarks

• Environment variables used
– MV2_USE_DC=1
– MV2_NUM_DC_TGT=64
– MV2_SMALL_MSG_DC_POOL=96
– MV2_LARGE_MSG_DC_POOL=96
– MV2_USE_RDMA_CM=0

Courtesy: Pramod Shivaji Kumbhar@EPFL
Available from MVAPICH2-X 2.3rc2 onwards

MUG’19 93Network Based Computing Laboratory

Performance of CNTK with MVAPICH2-X on CPU-based Deep Learning

0
100
200
300
400
500
600
700
800

28 56 112 224

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

Intel MPI
MVAPICH2
MVAPICH2-XPMEM

CNTK AlexNet Training
(B.S=default, iteration=50, ppn=28)

20%

9%

• CPU-based training of AlexNet neural
network using ImageNet ILSVRC2012
dataset

• Advanced XPMEM-based designs show up
to 20% benefits over Intel MPI (IMPI) for
CNTK DNN training using All_Reduce

• The proposed designs show good
scalability with increasing system size

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, J. Hashmi, S. Chakraborty, M. Bayatpour, H.
Subramoni, and DK Panda, 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018

Available since MVAPICH2-X 2.3rc1 release

MUG’19 94Network Based Computing Laboratory

• CPU-based distributed TensorFlow
Benchmarks (TF) benchmark
– tf_cnn_benchmark tests

• AlexNet model training
– ImageNet ILSVRC2012 dataset

• Advanced SALaR and XPMEM based
designs in MVAPICH-X showed good
scalability

• Up to 15% and 35% improvements in
number of images per second at 448 and
896 processes, respectively.

Performance of TensorFlow with MVAPICH2-X on CPU

TensorFlow Images per Second

(higher is better)

35%

SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives, M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, P.
Kousha, and DK Panda IEEE Cluster 2018, Sep 2018 [Best Paper in Architecture Track]

Will be available in future MVAPICH2-X releases

MUG’19 95Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• Understanding Basic Intra-node Communication Mechanisms
– POSIX SHMEM vs. CMA vs. XPMEM

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onwards

• XPMEM-based MPI Derived Datatype Designs
– Will be available in future MVAPICH2-X releases

• Optimized Collective Communication and Advanced Transport Protocols
– Available from MVAPICH2-X 2.3rc2 onwards

• PGAS and Hybrid MPI+PGAS Support
– Available from MVAPICH2-X 2.1.9 onwards

Overview of MVAPICH2-X Features

MUG’19 96Network Based Computing Laboratory

UPC++ Support in MVAPICH2-X

MPI + {UPC++} Application

GASNet Interfaces

UPC++
Interface

Network

Conduit (MPI)

MVAPICH2-X
Unified Communication

Runtime (UCR)

MPI + {UPC++} Application

UPC++
Runtime

MPI
Interfaces

• Full and native support for hybrid MPI + UPC++ applications

• Better performance compared to IBV and MPI conduits

• OSU Micro-benchmarks (OMB) support for UPC++

• Available since MVAPICH2-X (2.2rc1)

0

5000

10000

15000

20000

25000

30000

35000

40000

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Ti
m

e
(u

s)

Message Size (bytes)

GASNet_MPI
GASNET_IBV
MV2-X

14x

Inter-node Broadcast (64 nodes 1:ppn)

MPI Runtime

More Details in Student Poster

Presentation

MUG’19 97Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,
International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation,
Int'l Conference on Parallel Processing (ICPP '12), September 2012

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
(s

)

No. of Processes

MPI-Simple

MPI-CSC

MPI-CSR

Hybrid (MPI+OpenSHMEM)
13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design
• 8,192 processes

- 2.4X improvement over MPI-CSR
- 7.6X improvement over MPI-Simple

• 16,384 processes
- 1.5X improvement over MPI-CSR
- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned
Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0

500

1000

1500

2000

2500

3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
(s

ec
on

ds
)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min
- Hybrid – 1172 sec; 0.36 TB/min
- 51% improvement over MPI-design

MUG’19 98Network Based Computing Laboratory

• Released on 08/12/2019

• Major Features and Enhancements

– Based on MVAPICH2-X 2.3

– New design based on Amazon EFA adapter's Scalable Reliable Datagram (SRD) transport protocol

– Support for XPMEM based intra-node communication for point-to-point and collectives

– Enhanced tuning for point-to-point and collective operations

– Targeted for AWS instances with Amazon Linux 2 AMI and EFA support

– Tested with c5n.18xlarge instance

MVAPICH2-X-AWS 2.3

MUG’19 99Network Based Computing Laboratory

C1:
1 Gbps

CC1:
10 Gbps

C3: ~100us latency

C4: EBS optimized

C5: ENA
25 Gbps
~50 us latency

Evolution of networking on AWS

C5n: EFA
100 Gbps
~15 us
latency

Deep Dive on OpenMPI and Elastic Fabric Adapter (EFA) - AWS Online Tech Talks, Linda Hedges

MUG’19 100Network Based Computing Laboratory

• Enhanced version of Elastic Network Adapter (ENA)

• Allows OS bypass, up to 100 Gbps bandwidth

• Network aware multi-path routing

• Exposed through libibverbs and libfabric interfaces

• Introduces new Queue-Pair (QP) type
– Scalable Reliable Datagram (SRD)

– Also supports Unreliable Datagram (UD)

– No support for Reliable Connected (RC)

Amazon Elastic Fabric Adapter (EFA)

MUG’19 101Network Based Computing Laboratory

IB Transport Types and Associated Trade-offs

Attribute Reliable
Connection

Reliable
Datagram

Dynamic
Connected

Scalable
Reliable

Datagram

Unreliable
Connectio

n

Unreliable
Datagram

Raw
Datagram

Scalability
(M processes, N nodes)

M2N QPs
per HCA

M QPs
per HCA

M QPs
per HCA

M QPs
per HCA

M2N QPs
per HCA

M QPs
per HCA

1 QP
per HCA

Re
lia

bi
lit

y

Corrupt data
detected Yes

Data Delivery
Guarantee Data delivered exactly once No guarantees

Data Order
Guarantees Per connection

One source to
multiple

destinations
Per connection No

Unordered,
duplicate data

detected
No No

Data Loss
Detected Yes No No

Error
Recovery

Errors (retransmissions, alternate path, etc.) handled by transport layer.
Client only involved in handling fatal errors (links broken, protection

violation, etc.)

Errors are
reported to
responder

None None

Scalable
Reliable

Datagram

MUG’19 102Network Based Computing Laboratory

Scalable Reliable Datagrams (SRD): Features & Limitations

Feature UD SRD

Send/Recv ✔ ✔

Send w/ Immediate ✖ ✖

RDMA
Read/Write/Atomic ✖ ✖

Scatter Gather Lists ✔ ✔

Reliable Delivery ✖ ✔

Ordering ✖ ✖

Inline Sends ✖ ✖

Global Routing Header ✔ ✖

Max Message Size 4KB 8KB

• Similar to IB Reliable Datagram
– No limit on number of outstanding messages per

context

• Out of order delivery
– No head-of-line blocking

– Bad fit for MPI, can suit other workloads

• Packet spraying over multiple ECMP paths
– No hotspots

– Fast and transparent recovery from network
failures

• Congestion control designed for large scale
– Minimize jitter and tail latency

Amazon Elastic Fabric Adapter: Anatomy, Capabilities, and the Road Ahead, Raghu Raja, OpenFabrics Workshop 2019

MUG’19 103Network Based Computing Laboratory

Verbs level evaluation of EFA performance

0

5

10

15

20

25

2 8 32 128 512 2048

La
te

nc
y

 (u
s)

Message Size (Bytes)

Ping-Pong Latency

UD SRD

0

0.5

1

1.5

2

2.5

2 8 32 128 512 2048
M

es
sa

ge
 R

at
e

(m

ill
io

n
m

sg
/s

ec
)

Message Size (Bytes)

Unidirectional Message Rate

UD SRD

16.95

15.69

2.02

1.77

• SRD adds 8-10% overhead compared to UD
• Due to hardware based acks used for reliability

• Instance type: c5n.18xlarge
• CPU: Intel Xeon Platinum 8124M @ 3.00GHz

0

0.5

1

1.5

2

2.5

3

3.5

2 8 32 128 512 2048

Message Size (Bytes)

Bidirectional Message Rate

UD SRD

2.91

2.54

MUG’19 104Network Based Computing Laboratory

Point-to-Point Performance

• Both UD and SRD shows similar latency for small messages

• SRD shows higher message rate due to lack of software reliability overhead

• SRD is faster for large messages due to larger MTU size

MUG’19 105Network Based Computing Laboratory

Collective Performance: MPI Scatterv

• SRD shows up to 60% improvement over UD

• Non-roots do not need to send back explicit acknowledgments

• Root does not need to buffer messages until ack is received

MUG’19 106Network Based Computing Laboratory

Collective Performance: MPI Gatherv

• Up to 33% improvement with SRD compared to UD

• Root does not need to send explicit acks to non-root processes

• Non-roots can exit as soon as the message is sent (no need to wait for acks)

MUG’19 107Network Based Computing Laboratory

Collective Performance: MPI Allreduce

• Up to 18% improvement with SRD compared to UD

• Bidirectional communication pattern allows piggybacking of acks

• Modest improvement compared to asymmetric communication patterns

MUG’19 108Network Based Computing Laboratory

Application Performance

0
10
20
30
40
50
60
70
80

72(2x36) 144(4x36) 288(8x36)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Processes (Nodes X PPN)

miniGhost

MV2X OpenMPI

10% better

0

5

10

15

20

25

30

72(2x36) 144(4x36) 288(8x36)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Processes (Nodes X PPN)

CloverLeaf

MV2X-UD MV2X-SRD

OpenMPI
27.5%
better

• Up to 10% performance improvement for MiniGhost on 8 nodes

• Up to 27% better performance with CloverLeaf on 8 nodes

MUG’19 109Network Based Computing Laboratory

MVAPICH2 Software Family
Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’19 110Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:
cudaMemcpy(s_hostbuf, s_devbuf, . . .);
MPI_Send(s_hostbuf, size, . . .);

At Receiver:
MPI_Recv(r_hostbuf, size, . . .);
cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces

High Productivity and Low Performance

MPI + CUDA - Naive

MUG’19 111Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:
for (j = 0; j < pipeline_len; j++)

cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j *
blksz, …);

for (j = 0; j < pipeline_len; j++) {
while (result != cudaSucess) {

result = cudaStreamQuery(…);
if(j > 0) MPI_Test(…);

}
MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

}
MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced

MUG’19 112Network Based Computing Laboratory

At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

MUG’19 113Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.2 Releases

• Support for MPI communication from NVIDIA GPU device memory
• High performance RDMA-based inter-node point-to-point

communication (GPU-GPU, GPU-Host and Host-GPU)
• High performance intra-node point-to-point communication for multi-

GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node

communication for multiple GPU adapters/node
• Optimized and tuned collectives for GPU device buffers
• MPI datatype support for point-to-point and collective communication

from GPU device buffers
• Unified memory

MUG’19 114Network Based Computing Laboratory

• MVAPICH2-GDR 2.3.2 requires the following software to be installed on your system:
1. Mellanox OFED 3.2 and later

2. NVIDIA Driver 367.48 or later

3. NVIDIA CUDA Toolkit 7.5 and later

4. NVIDIA Peer Memory (nv_peer_mem) module to enable GPUDirect RDMA (GDR) support

• Strongly Recommended for Best Performance
5. GDRCOPY Library by NVIDIA: https://github.com/NVIDIA/gdrcopy

• Comprehensive Instructions can be seen from the MVAPICH2-GDR User Guide:
– http://mvapich.cse.ohio-state.edu/userguide/gdr/

MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems

http://www.mellanox.com/page/products_dyn?product_family=26
http://www.nvidia.com/Download/driverResults.aspx/69372/
https://developer.nvidia.com/cuda-toolkit
http://www.mellanox.com/page/products_dyn?product_family=116
https://github.com/NVIDIA/gdrcopy
http://mvapich.cse.ohio-state.edu/userguide/gdr/

MUG’19 115Network Based Computing Laboratory

• Simple Installation steps for both systems

• Pick the right MVAPICH2-GDR RPM from Downloads page:
– http://mvapich.cse.ohio-state.edu/downloads/

– e.g. http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-
mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm (== <mv2-gdr-rpm-name>.rpm)

$ wget http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/<mv2-gdr-rpm-name>.rpm

Root Users:

$ rpm -Uvh --nodeps <mv2-gdr-rpm-name>.rpm

Non-Root Users:

$ rpm2cpio <mv2-gdr-rpm-name>.rpm | cpio – id

• Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems

http://mvapich.cse.ohio-state.edu/downloads/
http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm
mailto:mvapich-help@cse.ohio-state.edu

MUG’19 116Network Based Computing Laboratory

• RoCE V1 and V2 support

• RDMA_CM connection support

• CUDA-Aware Collective Tuning
– Point-point Tuning (available since MVAPICH2-GDR 2.0)

• Tuned thresholds for the different communication patterns and features

• Depending on the system configuration (CPU, HCA and GPU models)

– Tuning Framework for GPU based collectives
• Select the best algorithm depending on message size, system size and system configuration

• Support for Bcast and Gather operations for different GDR-enabled systems

• Available since MVAPICH2-GDR 2.2RC1 release

ROCE and Optimized Collectives Support

MUG’19 117Network Based Computing Laboratory

• Released on 08/08/2019

• Major Features and Enhancements
– Based on MVAPICH2 2.3.1

– Support for CUDA 10.1

– Support for PGI 19.x

– Enhanced intra-node and inter-node point-to-point performance

– Enhanced MPI_Allreduce performance for DGX-2 system

– Enhanced GPU communication support in MPI_THREAD_MULTIPLE mode

– Enhanced performance of datatype support for GPU-resident data

• Zero-copy transfer when P2P access is available between GPUs through NVLink/PCIe

– Enhanced GPU-based point-to-point and collective tuning

• OpenPOWER systems such as ORNL Summit and LLNL Sierra ABCI system @AIST, Owens and Pitzer systems @Ohio Supercomputer Center

– Scaled Allreduce to 24,576 Volta GPUs on Summit

– Enhanced intra-node and inter-node point-to-point performance for DGX-2 and IBM POWER8 and IBM POWER9 systems

– Enhanced Allreduce performance for DGX-2 and IBM POWER8/POWER9 systems

– Enhanced small message performance for CUDA-Aware MPI_Put and MPI_Get

– Flexible support for running TensorFlow (Horovod) jobs

MVAPICH2-GDR 2.3.2

MUG’19 118Network Based Computing Laboratory

• Support for Efficient Small Message Communication with GPUDirect RDMA

• Multi-stream Communication for IPC

• CMA- based Intra-node Host-to-Host Communication Support

• MPI Datatype Support

• Support for Managed Memory

• Optimized Support for Deep Learning

Overview of MVAPICH2-GDR Features

MUG’19 119Network Based Computing Laboratory

• Current MPI design using GPUDirect RDMA uses
Rendezvous protocol

• Has higher latency for small messages

• Can eager protocol be supported to improve performance
for small messages?

• Two schemes proposed and used

• Loopback (using network adapter to copy data)

• Fastcopy/GDRCOPY (using CPU to copy data)

Enhanced MPI Design with GPUDirect RDMA
Sender Receiver

Rendezvous Protocol

fin

rndz_start

rndz_reply

data

Sender Receiver

Eager Protocol

send

R. Shi, S. Potluri, K. Hamidouche M. Li, J. Perkins D. Rossetti and D. K. Panda, Designing Efficient
Small Message Transfer Mechanism for Inter-node MPI Communication on InfiniBand GPU
Clusters IEEE International Conference on High Performance Computing (HiPC'2014)

MUG’19 120Network Based Computing Laboratory

0
1000
2000
3000
4000
5000
6000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

GPU-GPU Inter-node Bi-Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3

0
500

1000
1500
2000
2500
3000
3500

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

GPU-GPU Inter-node Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3

0
5

10
15
20
25
30

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

La
te

nc
y

(u
s)

Message Size (Bytes)

GPU-GPU Inter-node Latency

MV2-(NO-GDR) MV2-GDR 2.3

MVAPICH2-GDR-2.3
Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA

CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA

10x

9x

Optimized MVAPICH2-GDR Design

1.85us
11X

MUG’19 121Network Based Computing Laboratory

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

La
te

nc
y

(u
s)

Message Size (Bytes)

INTRA-NODE LATENCY (SMALL)

Intra-Socket

Inter-Socket

Device-to-Device Performance on OpenPOWER (NVLink2 + Volta)

0

5

10

15

20

25

30

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (G

B/
se

c)

Message Size (Bytes)

INTER-NODE BANDWIDTH

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

0
50

100
150
200
250
300
350
400
450
500

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

INTRA-NODE LATENCY (LARGE)

Intra-Socket

Inter-Socket

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

La
te

nc
y

(u
s)

Message Size (Bytes)

INTER-NODE LATENCY (SMALL)

0

50

100

150

200

250

300

350

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

INTER-NODE LATENCY (LARGE)

Intra-node Bandwidth: 70.4 GB/sec for 128MB
(via NVLINK2)

Intra-node Latency: 5.36 us (without GDRCopy)

Inter-node Latency: 5.66 us (without GDRCopy) Inter-node Bandwidth: 23.7 GB/sec (2 port EDR)Available since MVAPICH2-GDR 2.3a

0

10

20

30

40

50

60

70

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (G

B/
se

c)

Message Size (Bytes)

INTRA-NODE BANDWIDTH

Intra-Socket Inter-Socket

MUG’19 122Network Based Computing Laboratory

Tuning GDRCOPY Designs in MVAPICH2-GDR

Parameter Significance Default Notes
MV2_USE_GDRCOPY • Enable / Disable GDRCOPY-

based designs
1

(Enabled)
• Always enable

MV2_GDRCOPY_LIMIT • Controls messages size until
which GDRCOPY is
used

8 KByte • Tune for your system
• GPU type, host architecture.
Impacts the eager performance

MV2_GPUDIRECT_GDR
COPY_LIB

• Path to the GDRCOPY
library

Unset • Always set

MV2_USE_GPUDIRECT_
D2H_GDRCOPY_LIMIT

• Controls messages size until
which GDRCOPY is used at
sender

16Bytes • Tune for your systems
• CPU and GPU type

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’19 123Network Based Computing Laboratory

Tuning Loopback Designs in MVAPICH2-GDR

Parameter Significance Default Notes
MV2_USE_GPUDIRECT_
LOOPBACK

• Enable / Disable
LOOPBACK-based designs

1
(Enabled)

• Always enable

MV2_GPUDIRECT_LOO
PBACK_LIMIT

• Controls messages size until
which LOOPBACK is
used

8 KByte • Tune for your system
• GPU type, host architecture and
HCA. Impacts the eager
performance
•Sensitive to the P2P issue

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’19 124Network Based Computing Laboratory

Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR

Parameter Significance Default Notes
MV2_USE_GPUDIRECT • Enable / Disable GDR-based

designs
1

(Enabled)
• Always enable

MV2_GPUDIRECT_LIMIT • Controls messages size until
which GPUDirect RDMA is
used

8 KByte • Tune for your system
• GPU type, host architecture
and
CUDA version: impact pipelining
overheads and P2P bandwidth
bottlenecks

MV2_USE_GPUDIRECT_
RECEIVE_LIMIT

• Controls messages size until
which 1 hop design is used

(GDR Write at the receiver)

256KBytes • Tune for your system
• GPU type, HCA type and
configuration

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’19 125Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
• HoomDBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768
MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

Av
er

ag
e

Ti
m

e
St

ep
s p

er
 se

co
nd

 (T
PS

)

Number of Processes

MV2 MV2+GDR

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32Av
er

ag
e

Ti
m

e
St

ep
s p

er
 se

co
nd

(T

PS
)

Number of Processes

64K Particles 256K Particles

2X2X

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’19 126Network Based Computing Laboratory

• Support for Efficient Small Message Communication with GPUDirect RDMA

• Multi-stream Communication for IPC

• CMA- based Intra-node Host-to-Host Communication Support

• MPI Datatype Support

• Support for Managed Memory

• Optimized Support for Deep Learning

Overview of MVAPICH2-GDR Features

MUG’19 127Network Based Computing Laboratory

Multi-stream Communication using CUDA IPC on OpenPOWER and DGX-1

• Up to 16% higher Device to Device (D2D) bandwidth on OpenPOWER + NVLink inter-connect

• Up to 30% higher D2D bandwidth on DGX-1 with NVLink

•

0

5000

10000

15000

20000

25000

30000

35000

40000

128K 256K 512K 1M 2M 4M

M
ill

io
n

By
te

s (
M

B)
/s

ec
on

d

Message Size (Bytes)

Pt-to-pt (D-D) Bandwidth:
Benefits of Multi-stream CUDA IPC Design

1-stream 4-streams

16% better

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

16K 32K 64K 128K 256K 512K 1M 2M 4M

M
ill

io
n

By
te

s (
M

B)
/s

ec
on

d

Message Size (Bytes)

Pt-to-pt (D-D) Bandwidth:
Benefits of Multi-stream CUDA IPC Design

1-stream 4-streams

30% better

Available since MVAPICH2-GDR-2.3a

MUG’19 128Network Based Computing Laboratory

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Ba
nd

w
id

th
 (M

Bp
s)

Message Size (Bytes)

INTRA-NODE Pt-to-Pt (H2H) BANDWIDTH

MV2-GDR (w/out CMA) MV2-GDR (w/ CMA)

CMA-based Intra-node Host-to-Host Communication Support

0

100

200

300

400

500

600

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

20
97

15
2

41
94

30
4

La
te

nc
y

(u
s)

Message Size (Bytes)

INTRA-NODE Pt-to-Pt (H2H) LATENCY

MV2-GDR (w/out CMA) MV2-GDR (w/ CMA)

MVAPICH2-GDR-2.3a
Intel Broadwell (E5-2680 v4 @ 3240 GHz) node – 28 cores

NVIDIA Tesla K-80 GPU, and Mellanox Connect-X4 EDR HCA
CUDA 8.0, Mellanox OFED 4.0 with GPU-Direct-RDMA

• Up to 30% lower Host-to-Host (H2H) latency and 30% higher H2H Bandwidth

30% better30% better

MUG’19 129Network Based Computing Laboratory

• Support for Efficient Small Message Communication with GPUDirect RDMA

• Multi-stream Communication for IPC

• CMA- based Intra-node Host-to-Host Communication Support

• MPI Datatype Support

• Support for Managed Memory

• Optimized Support for Deep Learning

Overview of MVAPICH2-GDR Features

MUG’19 130Network Based Computing Laboratory

• Multi-dimensional data
• Row based organization
• Contiguous on one dimension
• Non-contiguous on other dimensions

• Halo data exchange
• Duplicate the boundary
• Exchange the boundary in each

iteration

Halo data exchange

Non-contiguous Data Exchange

MUG’19 131Network Based Computing Laboratory

MPI Datatype support in MVAPICH2

• Datatypes support in MPI
– Operate on customized datatypes to improve productivity

– Enable MPI library to optimize non-contiguous data

At Sender:
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);
…
MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

• Inside MVAPICH2
- Use datatype specific CUDA Kernels to pack data in chunks
- Efficiently move data between nodes using RDMA
- In progress - currently optimizes vector and hindexed datatypes
- Transparent to the user
H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel
and Distributed Systems, Accepted for Publication.

MUG’19 132Network Based Computing Laboratory

MPI Datatype Processing (Computation Optimization)

• Comprehensive support
• Targeted kernels for regular datatypes - vector, subarray, indexed_block

• Generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library
• Avoids stream conflicts with application kernels

• Flexible set of parameters for users to tune kernels
• Vector

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_VECTOR_YSIZE

• Subarray
• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
• MV2_CUDA_KERNEL_SUBARR_XDIM
• MV2_CUDA_KERNEL_SUBARR_YDIM
• MV2_CUDA_KERNEL_SUBARR_ZDIM

• Indexed_block

• MV2_CUDA_KERNEL_IDXBLK_XDIM

MUG’19 133Network Based Computing Laboratory

Stencil3D communication kernel on 2 GPUs
with various X, Y, Z dimensions using
MPI_Isend/Irecv
• DT: Direct Transfer, TR: Targeted Kernel
• Optimized design gains up to 15%, 15% and

22% compared to TR, and more than 86%
compared to DT on X, Y and Z respectively

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y

(m
s)

Size of DimZ, [16,16,z]

Performance of Stencil3D (3D subarray)

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y

(m
s)

Size of DimY, [16,y,16]

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y

(m
s)

Size of DimX, [x,16,16]

DT TR Enhanced

86%

MUG’19 134Network Based Computing Laboratory

MPI Datatype Processing (Communication Optimization)

Waste of computing resources on CPU and GPUCommon Scenario

*A, B…contain non-contiguous MPI Datatype

MPI_Isend (A,.. Datatype,…)
MPI_Isend (B,.. Datatype,…)
MPI_Isend (C,.. Datatype,…)
MPI_Isend (D,.. Datatype,…)
…

MPI_Waitall (…);

MUG’19 135Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96
N

or
m

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node)

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data
Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content
/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu

MUG’19 136Network Based Computing Laboratory

MVAPICH2-GDR: Enhanced Derived Datatype

• Kernel-based and GDRCOPY-based one-shot packing for inter-socket and inter-node communication

• Zero-copy (packing-free) for GPUs with peer-to-peer direct access over PCIe/NVLink

0

5

10

15

20

25

[6, 8,8,8,8] [6, 8,8,8,16] [6, 8,8,16,16] [6, 16,16,16,16]

MILC

Sp
ee

du
p

Problem size

GPU-based DDTBench mimics MILC
communication kernel

OpenMPI 4.0.0 MVAPICH2-GDR 2.3.1 MVAPICH2-GDR-Next
Platform: Nvidia DGX-2 system

(NVIDIA Volta GPUs connected with NVSwitch), CUDA 9.2

0

5

10

15

20

25

16 32 64

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of GPUs

Communication Kernel of COSMO Model

MVAPICH2-GDR 2.3.1 MVAPICH2-GDR-Next
Platform: Cray CS-Storm

(16 NVIDIA Tesla K80 GPUs per node), CUDA 8.0

Improved 3.4X

(https://github.com/cosunae/HaloExchangeBenchmarks)

Improved 15X

https://github.com/cosunae/HaloExchangeBenchmarks

MUG’19 137Network Based Computing Laboratory

• Support for Efficient Small Message Communication with GPUDirect RDMA

• Multi-stream Communication for IPC

• CMA- based Intra-node Host-to-Host Communication Support

• MPI Datatype Support

• Support for Managed Memory

• Optimized Support for Deep Learning

Overview of MVAPICH2-GDR Features

MUG’19 138Network Based Computing Laboratory

Enhanced Support for Intra-node Unified Memory

● CUDA Unified Memory(UM) => no memory pin down
● No IPC support for intra-node communication
● No GDR support for Inter-node communication

● Initial and basic support in MVAPICH2-GDR
● For both intra- and inter-nodes use “pipeline

through” host memory
● Enhance intra-node UM to use IPC

● Double buffering pair-wise IPC-based scheme
● Brings IPC performance to UM
● High performance and high productivity

● Available since MVAPICH2-GDR 2.2RC1

K. Hamidouche, A. Awan, A. Venkatesh, and D. K Panda, CUDA M3: Designing Efficient
CUDA Managed Memory-aware MPI by Exploiting GDR and IPC, HiPC ‘16

On K80 with MV2-GDR

MUG’19 139Network Based Computing Laboratory

Characterizing Unified Memory aware MPI on modern GPUs

● Improved UM support in Pascal & Volta GPUs through:
● Advanced GPU page fault engines
● cudaMemPrefetch and cudaMemAdvise APIs provide

more control for UM data placement
● Are the UM designs developed during Kepler era still valid?
● Carried out an in-depth characterization
● Our characterization studies show:

● The UM designs from Kepler era are still valid
● They are 4.2X and 2.8X better in latency compared to

MVAPICH2-GDR and Open MPI

K. V. Manian, A. Awan, A. Ruhela, C. Chu, H. Subramoni and D. K Panda, Characterizing
CUDA Unified Memory (UM)-Aware MPI Designs on Modern GPU Architectures, GPGPU ‘19
Workshop, in conjunction with ASPLOS ’19, April ‘19

On V100 with MV2-GDR and OMPI

On V100 with MV2-GDR

MUG’19 140Network Based Computing Laboratory

• Support for Efficient Small Message Communication with GPUDirect RDMA

• Multi-stream Communication for IPC

• CMA- based Intra-node Host-to-Host Communication Support

• MPI Datatype Support

• Support for Managed Memory

• Optimized Support for Deep Learning

Overview of MVAPICH2-GDR Features

MUG’19 141Network Based Computing Laboratory

• Scale-up: Intra-node Communication

– Many improvements like:
• NVIDIA cuDNN, cuBLAS, NCCL, etc.

• CUDA 9 Co-operative Groups

• Scale-out: Inter-node Communication

– DL Frameworks – most are optimized for single-
node only

– Distributed (Parallel) Training is an emerging
trend
• OSU-Caffe – MPI-based

• Microsoft CNTK – MPI/NCCL2

• Google TensorFlow – gRPC-based/MPI/NCCL2

• Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)

• PyTorch

Deep Learning: New Challenges for Runtimes

Sc
al

e-
up

 P
er

fo
rm

an
ce

Scale-out Performance

cuDNN

gRPC

Hadoop

MPI
MKL-DNN

Desired

NCCL2

MUG’19 142Network Based Computing Laboratory

Data Parallel Deep Learning and MPI Collectives

MPI_Bcast (GPU 0)

packed_comm_buff

L1

L2

..
Ln

F

L1

L2

..
Ln

L1

L2

..
Ln

L1

L2

..
Ln

Params

GP
U

 0 Params

GP
U

 1 Params

GP
U

 2 Params

GP
U

 3

Gradients

1. Data
Propagation

2. Forward
Backward

Pass

3. Gradient
Aggregation

B F B F B F B

packed_redu
ce_buff

packed_redu
ce_buff

packed_redu
ce_buff

packed_redu
ce_buff

ApplyUpdates

MPI_Reduce (GPU 0)

Loop {}• Major MPI Collectives
involved in Designing
distributed frameworks

• MPI_Bcast – required for
DNN parameter exchange

• MPI_Reduce – needed for
gradient accumulation from
multiple solvers

• MPI_Allreduce – use just
one Allreduce instead of
Reduce and Broadcast

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

MUG’19 143Network Based Computing Laboratory

• TensorFlow is the most popular DL
framework

• gRPC is the official distributed
training runtime
– Many problems for HPC use-cases

• Community efforts - Baidu and
Uber’s Horovod have added MPI
support to TF across nodes

• Need to understand several
options currently available 

Distributed Training using TensorFlow (TF)

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”,
CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112

MUG’19 144Network Based Computing Laboratory

• Efficient Allreduce is crucial for Horovod’s
overall training performance
– Both MPI and NCCL designs are available

• We have evaluated Horovod extensively
and compared across a wide range of
designs using gRPC and gRPC extensions

• MVAPICH2-GDR achieved up to 90%
scaling efficiency for ResNet-50 Training
on 64 Pascal GPUs

Scalable TensorFlow using Horovod, MPI, and NCCL

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI:
Characterization, Designs, and Performance Evaluation”, CCGrid ‘19.
https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112

MUG’19 145Network Based Computing Laboratory

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

0

1000000

2000000

3000000

4000000

5000000

6000000

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

1

10

100

1000

10000

100000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

*Available since MVAPICH2-GDR 2.3a

~30X better
MV2 is ~2X better

than Baidu

~10X better OpenMPI is ~5X slower
than Baidu

~4X better

MUG’19 146Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

• Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

1

10

100

1000

10000

100000

128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~1.2X better

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

1

10

100

1000

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~3X better

MUG’19 147Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)

• Optimized designs in upcoming MVAPICH2-GDR offer better/comparable performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

1

10

100

1000

10000

256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR-Next NCCL-2.4

~2.5X better

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR-Next NCCL-2.4

~5.8X better

MUG’19 148Network Based Computing Laboratory

MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale

• Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

0

1

2

3

4

5

6

32M 64M 128M 256M

Ba
nd

w
id

th
 (G

B/
s)

Message Size (Bytes)

Bandwidth on 1,536 GPUs

MVAPICH2-GDR-2.3.2 NCCL 2.4

1.7X better

0

50

100

150

200

250

300

350

400

450

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency on 1,536 GPUs

MVAPICH2-GDR-2.3.2 NCCL 2.4

1.6X better

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect

0
1
2
3
4
5
6
7
8
9

10

24 48 96 192 384 768 1536

Ba
nd

w
id

th
 (G

B/
s)

Number of GPUs

128MB Message

SpectrumMPI 10.2.0.11 OpenMPI 4.0.1 NCCL 2.4 MVAPICH2-GDR-2.3.2

1.7X better

MUG’19 149Network Based Computing Laboratory

Distributed Training with TensorFlow and MVAPICH2-GDR

• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

Im
ag

e
pe

r s
ec

on
d

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

9% higher

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16

Sc
al

in
g

Ef
fic

ie
nc

y
(%

)

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

Scaling Efficiency =
Actual throughput

Ideal throughput at scale
× 100%

MUG’19 150Network Based Computing Laboratory

Distributed Training with TensorFlow and MVAPICH2-GDR

• ResNet-50 Training using
TensorFlow benchmark on
SUMMIT -- 1536 Volta
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)
= 3.6 x 90 = 332 seconds =
5.5 minutes!

0

50

100

150

200

250

300

350

400

1 2 4 6 12 24 48 96 192 384 768 1536

Im
ag

e
pe

r s
ec

on
d

(T
ho

us
an

ds
)

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs

MVAPICH2-GDR reaching ~0.35 million
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

MUG’19 151Network Based Computing Laboratory

MVAPICH2 Software Family
Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’19 152Network Based Computing Laboratory

• MVAPICH2-EA 2.1 (Energy-Aware)
• A white-box approach
• New Energy-Efficient communication protocols for pt-pt and collective operations
• Intelligently apply the appropriate Energy saving techniques
• Application oblivious energy saving

• OEMT
• A library utility to measure energy consumption for MPI applications
• Works with all MPI runtimes
• PRELOAD option for precompiled applications
• Does not require ROOT permission:

• A safe kernel module to read only a subset of MSRs

Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)

MUG’19 153Network Based Computing Laboratory

Designing Energy-Aware (EA) MPI Runtime

Energy Spent in Communication
Routines

Energy Spent in Computation
Routines

Overall application Energy
Expenditure

Point-to-point Routines
Collective
Routines

RMA Routines

MVAPICH2-EA Designs

MPI Two-sided and collectives (ex: MVAPICH2)

Other PGAS Implementations (ex: OSHMPI)One-sided runtimes (ex: ComEx)

Impact MPI-3 RMA Implementations (ex: MVAPICH2)

MUG’19 154Network Based Computing Laboratory

• An energy efficient runtime that
provides energy savings without
application knowledge

• Uses automatically and
transparently the best energy
lever

• Provides guarantees on
maximum degradation with 5-
41% savings at <= 5%
degradation

• Pessimistic MPI applies energy
reduction lever to each MPI call

MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)

A Case for Application-Oblivious Energy-Efficient MPI Runtime A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D.

K. Panda, D. Kerbyson, and A. Hoise, Supercomputing ‘15, Nov 2015 [Best Student Paper Finalist]

1

MUG’19 155Network Based Computing Laboratory

MVAPICH2 Software Family
Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’19 156Network Based Computing Laboratory

Overview of OSU INAM
• A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime

– http://mvapich.cse.ohio-state.edu/tools/osu-inam/

• Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes

• Capability to analyze and profile node-level, job-level and process-level activities for MPI communication
– Point-to-Point, Collectives and RMA

• Ability to filter data based on type of counters using “drop down” list

• Remotely monitor various metrics of MPI processes at user specified granularity

• "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X

• Visualize the data transfer happening in a “live” or “historical” fashion for entire network, job or set of nodes

• OSU INAM 0.9.4 released on 11/10/2018

– Enhanced performance for fabric discovery using optimized OpenMP-based multi-threaded designs

– Ability to gather InfiniBand performance counters at sub-second granularity for very large (>2000 nodes) clusters

– Redesign database layout to reduce database size

– Enhanced fault tolerance for database operations
• Thanks to Trey Dockendorf @ OSC for the feedback

– OpenMP-based multi-threaded designs to handle database purge, read, and insert operations simultaneously

– Improved database purging time by using bulk deletes

– Tune database timeouts to handle very long database operations

– Improved debugging support by introducing several debugging levels

http://mvapich.cse.ohio-state.edu/tools/osu-inam/

MUG’19 157Network Based Computing Laboratory

OSU INAM Features

• Show network topology of large clusters
• Visualize traffic pattern on different links
• Quickly identify congested links/links in error state
• See the history unfold – play back historical state of the network

Comet@SDSC --- Clustered View

(1,879 nodes, 212 switches, 4,377 network links)
Finding Routes Between Nodes

MUG’19 158Network Based Computing Laboratory

OSU INAM Features (Cont.)

Visualizing a Job (5 Nodes)

• Job level view
• Show different network metrics (load, error, etc.) for any live job
• Play back historical data for completed jobs to identify bottlenecks

• Node level view - details per process or per node
• CPU utilization for each rank/node
• Bytes sent/received for MPI operations (pt-to-pt, collective, RMA)
• Network metrics (e.g. XmitDiscard, RcvError) per rank/node

Estimated Process Level Link Utilization

• Estimated Link Utilization view
• Classify data flowing over a network link at

different granularity in conjunction with
MVAPICH2-X 2.2rc1
• Job level and
• Process level

More Details in Tutorial/Demo

Session Tomorrow

MUG’19 159Network Based Computing Laboratory

• Available since 2004

• Suite of microbenchmarks to study communication performance of various programming models

• Benchmarks available for the following programming models
– Message Passing Interface (MPI)

– Partitioned Global Address Space (PGAS)

• Unified Parallel C (UPC)

• Unified Parallel C++ (UPC++)

• OpenSHMEM

• Benchmarks available for multiple accelerator based architectures
– Compute Unified Device Architecture (CUDA)

– OpenACC Application Program Interface

• Part of various national resource procurement suites like NERSC-8 / Trinity Benchmarks

• Continuing to add support for newer primitives and features

• Please visit the following link for more information
– http://mvapich.cse.ohio-state.edu/benchmarks/

OSU Microbenchmarks

http://mvapich.cse.ohio-state.edu/benchmarks/

MUG’19 160Network Based Computing Laboratory

• MPI runtime has many parameters
• Tuning a set of parameters can help you to extract higher performance
• Compiled a list of such contributions through the MVAPICH Website

– http://mvapich.cse.ohio-state.edu/best_practices/

• Initial list of applications
– Amber
– HoomDBlue
– HPCG
– Lulesh
– MILC
– Neuron
– SMG2000
– Cloverleaf
– SPEC (LAMMPS, POP2, TERA_TF, WRF2)

• Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu.
• We will link these results with credits to you.

Applications-Level Tuning: Compilation of Best Practices

http://mvapich.cse.ohio-state.edu/best_practices/

MUG’19 161Network Based Computing Laboratory

Amber: Impact of Tuning Eager Threshold

0

100

200

300

400

500

64 128 256

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

Default Tuned

19%

• Tuning the Eager threshold has a significant
impact on application performance by avoiding
the synchronization of rendezvous protocol
and thus yielding better communication
computation overlap

• 19% improvement in overall execution time at
256 processes

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used
– MV2_IBA_EAGER_THRESHOLD=131072

– MV2_VBUF_TOTAL_SIZE=131072

• Input files used
– Small: MDIN

– Large: PMTOP
Data Submitted by: Dong Ju Choi @ UCSD

http://www.sdsc.edu/%7Edchoi/amber/mdin
http://www.sdsc.edu/%7Edchoi/amber/prmtop

MUG’19 162Network Based Computing Laboratory

MiniAMR: Impact of Tuning Eager Threshold

• Tuning the Eager threshold has a significant
impact on application performance by avoiding
the synchronization of rendezvous protocol
and thus yielding better communication
computation overlap

• 8% percent reduction in total communication
time

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used
– MV2_IBA_EAGER_THRESHOLD=32768

– MV2_VBUF_TOTAL_SIZE=32768

175

180

185

190

195

200

205

12
8

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

ec
)

Eager Threshold (Bytes)

MiniAMR

8%

Data Submitted by Karen Tomko @ OSC and Dong Ju Choi @ UCSD

MUG’19 163Network Based Computing Laboratory

• UD-based transport protocol selection
benefits the SMG2000 application

• 22% and 6% on 1,024 and 4,096 cores,
respectively

• Library Version: MVAPICH2 2.1

• MVAPICH Flags used
– MV2_USE_ONLY_UD=1

• System Details
– Stampede@ TACC

– Sandybridge architecture with dual 8-cores
nodes and ConnectX-3 FDR network

SMG2000: Impact of Tuning Transport Protocol

0
10
20
30
40
50
60
70
80

1024 2048 4096

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

Default Tuned
22%

Data Submitted by Jerome Vienne @ TACC

MUG’19 164Network Based Computing Laboratory

• UD-based transport protocol selection
benefits the SMG2000 application

• 15% and 27% improvement is seen for 768 and
1,024 processes respectively

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used
– MV2_USE_ONLY_UD=1

• Input File
– YuEtAl2012

• System Details
– Comet@SDSC

– Haswell nodes with dual 12-cores socket per
node and Mellanox FDR (56 Gbps) network.

Neuron: Impact of Tuning Transport Protocol

0
20
40
60
80

100
120
140

384 512 768 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

Default Tuned

27%

Data Submitted by Mahidhar Tatineni @ SDSC

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144570&file=%5CYuEtAl2012%5C

MUG’19 165Network Based Computing Laboratory

0

0.2

0.4

0.6

0.8

1

1.2

HPCG

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Default Tuned

• Partial subscription nature of hybrid MPI+OpenMP
programming requires a new level of collective tuning

– For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce
shows 51% improvement on 2,048 cores

• 24% improvement on 512 cores
– 8 OpenMP threads per MPI processes

• Library Version: MVAPICH2 2.1

• MVAPICH Flags used
– The tuning parameters for hybrid MPI+OpenMP

programming models is on by default from MVAPICH2-2.1
onward

• System Details
– Stampede@ TACC

– Sandybridge architecture with dual 8-cores nodes and
ConnectX-3 FDR network

HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model

24%

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC

MUG’19 166Network Based Computing Laboratory

• Partial subscription nature of hybrid MPI+OpenMP
programming requires a new level of collective tuning

– For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce
shows 51% improvement on 2,048 cores

• 4% improvement on 512 cores
– 8 OpenMP threads per MPI processes

• Library Version: MVAPICH2 2.1

• MVAPICH Flags used
– The tuning parameters for hybrid MPI+OpenMP

programming models is on by default from MVAPICH2-2.1
onward

• System Details
– Stampede@ TACC

– Sandybridge architecture with dual 8-cores nodes and
ConnectX-3 FDR network

LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model

0

0.2

0.4

0.6

0.8

1

1.2

Lulesh

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Default Tuned

4%

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC

MUG’19 167Network Based Computing Laboratory

• Non-contiguous data processing is very common on HPC
applications. MVAPICH2 offers efficient designs for MPI
Datatype support using novel hardware features such as
UMR

• UMR-based protocol selection benefits the MILC
application.

– 4% and 6% improvement in execution time at 512 and 640
processors, respectively

• Library Version: MVAPICH2-X 2.2

• MVAPICH Flags used
– MV2_USE_UMR=1

• System Details
– The experimental cluster consists of 32 Ivy Bridge Compute nodes

interconnected by Mellanox FDR.

– The Intel Ivy Bridge processors consist of Xeon dual ten-core
sockets operating at 2.80GHz with 32GB RAM and Mellanox OFED
version 3.2-1.0.1.1.

MILC: Impact of User-mode Memory Registration (UMR) based tuning

0

10

20

30

40

50

60

70

128 256 512 640

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processes

Default Tuned

6%

Data Submitted by Mingzhe Li @ OSU

MUG’19 168Network Based Computing Laboratory

• HOOMD-blue is a Molecular Dynamics
simulation using a custom force field.

• GPUDirect specific features selection and
tuning significantly benefit the HOOMD-blue
application. We observe a factor of 2X
improvement on 32 GPU nodes, with both 64K
and 256K particles

• Library Version: MVAPICH2-GDR 2.2

• MVAPICH-GDR Flags used
– MV2_USE_CUDA=1

– MV2_USE_GPUDIRECT=1

– MV2_GPUDIRECT_GDRCOPY=1

• System Details
– Wilkes@Cambridge

– 128 Ivybridge nodes, each node is a dual 6-
cores socket with Mellanox FDR

HOOMD-blue: Impact of GPUDirect RDMA Based Tuning

0

1000

2000

3000

4 8 16 32

Av
er

ag
e

Ti
m

e
St

ep
s

pe
r s

ec
on

d
(T

PS
)

Number of Processes

256K Particles
MV2 MV2+GDR

0

1000

2000

3000

4000

4 8 16 32

Av
er

ag
e

Ti
m

e
St

ep
s

pe
r s

ec
on

d
(T

PS
)

Number of Processes

64K Particles
Default Tuned

2X

2X

Data Submitted by Khaled Hamidouche @ OSU

MUG’19 169Network Based Computing Laboratory

Application Scalability on Skylake and KNL with Omni-Path
MiniFE (1300x1300x1300 ~ 910 GB)

Runtime parameters: MV2_SMPI_LENGTH_QUEUE=524288 PSM2_MQ_RNDV_SHM_THRESH=128K PSM2_MQ_RNDV_HFI_THRESH=128K

0

20

40

60

80

100

120

140

2048 4096 8192

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes (KNL: 64ppn)

MVAPICH2

0

10

20

30

40

50

60

2048 4096 8192

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes (Skylake: 48ppn)

MVAPICH2

0

200

400

600

800

1000

1200

48 96 192 384 768

No. of Processes (Skylake: 48ppn)

MVAPICH2

NEURON (YuEtAl2012)

Courtesy: Mahidhar Tatineni @SDSC, Dong Ju (DJ) Choi@SDSC, and Samuel Khuvis@OSC ---- Testbed: TACC Stampede2 using MVAPICH2-2.3b

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 2048 4096

No. of Processes (KNL: 64ppn)

MVAPICH2

0

500

1000

1500

68 136 272 544 1088 2176 4352

No. of Processes (KNL: 68ppn)

MVAPICH2

0

500

1000

1500

2000

48 96 192 384 768 1536 3072

No. of Processes (Skylake: 48ppn)

MVAPICH2

Cloverleaf (bm64) MPI+OpenMP,
NUM_OMP_THREADS = 2

MUG’19 170Network Based Computing Laboratory

0

20

40

60

80

100

120

140

160

MILC Leslie3D POP2 LAMMPS WRF2 LU

Ex
ec

ut
io

n
Ti

m
e

in
 (s

)

Intel MPI 18.1.163

MVAPICH2-X-2.3rc1

31%

SPEC MPI 2007 Benchmarks: Broadwell + InfiniBand

MVAPICH2-X outperforms Intel MPI by up to 31%

Configuration: 448 processes on 16 Intel E5-2680v4 (Broadwell) nodes having 28 PPN and interconnected
with 100Gbps Mellanox MT4115 EDR ConnectX-4 HCA

29% 5%

-12%
1%

11%

MUG’19 171Network Based Computing Laboratory

MVAPICH2 – Plans for Exascale
• Performance and Memory scalability toward 1-10M cores
• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)

• MPI + Task*
• Enhanced Optimization for GPU Support and Accelerators
• Taking advantage of advanced features of Mellanox InfiniBand

• Tag Matching*
• Adapter Memory*

• Enhanced communication schemes for upcoming architectures
• Intel Optane*
• BlueField*
• CAPI*

• Extended topology-aware collectives
• Extended Energy-aware designs and Virtualization Support
• Extended Support for MPI Tools Interface (as in MPI 3.0)
• Extended FT support
• Support for * features will be available in future MVAPICH2 Releases

MUG’19 172Network Based Computing Laboratory

• Supported through X-ScaleSolutions (http://x-scalesolutions.com)
• Benefits:

– Help and guidance with installation of the library

– Platform-specific optimizations and tuning

– Timely support for operational issues encountered with the library

– Web portal interface to submit issues and tracking their progress

– Advanced debugging techniques

– Application-specific optimizations and tuning

– Obtaining guidelines on best practices

– Periodic information on major fixes and updates

– Information on major releases

– Help with upgrading to the latest release

– Flexible Service Level Agreements
• Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

http://x-scalesolutions.com/

MUG’19 173Network Based Computing Laboratory

• Recently joined the OpenPOWER Consortium as a silver ISV member
• Provides flexibility:

– To have MVAPICH2, HiDL and HiBD libraries getting integrated into the OpenPOWER software stack

– A part of the OpenPOWER ecosystem

– Can participate with different vendors for bidding, installation and deployment process

Silver ISV Member for the OpenPOWER Consortium

MUG’19 174Network Based Computing Laboratory

Funding Acknowledgments
Funding Support by

Equipment Support by

MUG’19 175Network Based Computing Laboratory

Personnel Acknowledgments
Current Students (Graduate)

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– C.-H. Chu (Ph.D.)

– J. Hashmi (Ph.D.)

– A. Jain (Ph.D.)

– K. S. Kandadi (M.S.)

Past Students
– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– R. Biswas (M.S.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– S. Chakraborthy (Ph.D.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– R. Rajachandrasekar (Ph.D.)

– D. Shankar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

– J. Zhang (Ph.D.)

Past Research Scientist
– K. Hamidouche

– S. Sur

– X. Lu

Past Post-Docs
– D. Banerjee

– X. Besseron

– H.-W. Jin

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– Kamal Raj (M.S.)

– K. S. Khorassani (Ph.D.)

– P. Kousha (Ph.D.)

– A. Quentin (Ph.D.)

– B. Ramesh (M. S.)

– S. Xu (M.S.)

– J. Lin

– M. Luo

– E. Mancini

Past Programmers
– D. Bureddy

– J. Perkins

Current Research Specialist
– J. Smith

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post-doc
– M. S. Ghazimeersaeed

– A. Ruhela

– K. Manian
Current Students (Undergraduate)

– V. Gangal (B.S.)

– N. Sarkauskas (B.S.)

Past Research Specialist
– M. Arnold

Current Research Scientist
– H. Subramoni– Q. Zhou (Ph.D.)

MUG’19 176Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

Follow us on Twitter: @mvapich
The High-Performance Deep Learning Project

http://hidl.cse.ohio-state.edu/
The High-Performance Big Data Project

http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu/

	How to Boost the Performance of Your HPC/AI Applications with MVAPICH2 Libraries?
	Parallel Programming Models Overview
	Brief History of Deep Learning (DL)
	Understanding the Deep Learning Resurgence
	Deep Learning, Many-cores, and HPC
	Supporting Programming Models for Multi-Petaflop and Exaflop Systems: Challenges
	Designing (MPI+X) for Exascale
	Overview of the MVAPICH2 Project
	Architecture of MVAPICH2 Software Family (for HPC and DL)
	Strong Procedure for Design, Development and Release
	MVAPICH2 Software Family
	MVAPICH2 2.3.2
	Overview of MVAPICH2 Features
	Towards High Performance and Scalable Startup at Exascale
	Startup Performance on KNL + Omni-Path
	Startup Performance on TACC Frontera
	On-demand Connection Management for OpenSHMEM+MPI
	How to Get the Best Startup Performance with MVAPICH2?
	Overview of MVAPICH2 Features
	One-way Latency: MPI over IB with MVAPICH2
	Bandwidth: MPI over IB with MVAPICH2
	Inter-node Point-to-Point Tuning: Eager Thresholds
	Intra-node Point-to-Point Performance on OpenPower
	Intra-node Point-to-point Performance on ARM Cortex-A72
	Overview of MVAPICH2 Features
	Hybrid (UD/RC/XRC) Mode in MVAPICH2
	Overview of MVAPICH2 Features
	MVAPICH2 Multi-Rail Design
	Performance Tuning on Multi-Rail Clusters
	Overview of MVAPICH2 Features
	Process Mapping support in MVAPICH2
	Preset Process-binding Policies – Bunch
	Preset Process-binding Policies – Scatter
	Process and thread binding policies in hybrid MPI+Threads
	Binding Example in Hybrid (MPI+Threads)
	Binding Example in Hybrid (MPI+Threads) ---- Cont’d
	Binding Example in Hybrid (MPI+Threads) ---- Cont’d
	User-Defined Process Mapping
	Overview of MVAPICH2 Features
	Collective Communication in MVAPICH2
	Hardware Multicast-aware MPI_Bcast on TACC Stampede
	MPI_Scatter - Benefits of using Hardware-Mcast
	Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)
	Benefits of SHARP Allreduce at Application Level
	Problems with Blocking Collective Operations
	Concept of Non-blocking Collectives
	Non-blocking Collective (NBC) Operations
	How do I write applications with NBC?
	P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives
	Evaluation of SHArP based Non Blocking Allreduce
	Presentation Overview
	MPI Tools Information Interface (MPI_T)
	Co-designing Applications to use MPI-T
	Performance Engineering Applications using MVAPICH2 and TAU
	Enhancing MPI_T Support
	PVARs Exposed by MVAPICH2
	CVARs Exposed by MVAPICH2
	Using MVAPICH2 and TAU
	VBUF usage without CVARs
	VBUF Memory Usage Without and With CVAR
	MVAPICH2-Azure 2.3.2
	Performance of Radix
	Performance of FDS (HC)
	MVAPICH2 Software Family
	MVAPICH2-X for MPI and Hybrid MPI + PGAS Applications
	MVAPICH2-X 2.3rc2
	MVAPICH2-X Feature Table
	Overview of MVAPICH2-X Features
	Minimizing Memory Footprint by Direct Connect (DC) Transport
	Impact of DC Transport Protocol on Neuron
	Overview of MVAPICH2-X Features
	Existing Intra-Node Communication Mechanism in MPI
	Shared Address-space based Communication
	MPI Level Point-to-Point Latency
	MPI Level Intra-socket Point-to-Point Bandwidth
	MPI Level Inter-Socket Point-to-Point Bandwidth
	Cooperative Rendezvous Protocols
	Overview of MVAPICH2-X Features
	Optimized CMA-based Collectives for Large Messages
	Overview of MVAPICH2-X Features
	Benefits of the New Asynchronous Progress Design: Broadwell + InfiniBand
	Overview of MVAPICH2-X Features
	Shared Address Space (XPMEM)-based Collectives Design
	Reduction Collectives on IBM OpenPOWER
	Application Level Benefits of XPMEM-based Designs
	Impact of XPMEM-based Designs on MiniAMR
	Overview of MVAPICH2-X Features
	Performance of Non-Reduction Collectives with XPMEM
	Overview of MVAPICH2-X Features
	Efficient Zero-copy MPI Datatypes for Emerging Architectures
	Overview of MVAPICH2-X Features
	Impact of Optimized Small Message MPI_Alltoallv Algorithm
	Performance of CNTK with MVAPICH2-X on CPU-based Deep Learning
	Performance of TensorFlow with MVAPICH2-X on CPU
	Overview of MVAPICH2-X Features
	UPC++ Support in MVAPICH2-X
	Application Level Performance with Graph500 and Sort
	MVAPICH2-X-AWS 2.3
	Evolution of networking on AWS
	Amazon Elastic Fabric Adapter (EFA)
	IB Transport Types and Associated Trade-offs
	Scalable Reliable Datagrams (SRD): Features & Limitations
	Verbs level evaluation of EFA performance
	Point-to-Point Performance
	Collective Performance: MPI Scatterv
	Collective Performance: MPI Gatherv
	Collective Performance: MPI Allreduce
	Application Performance
	MVAPICH2 Software Family
	MPI + CUDA - Naive
	MPI + CUDA - Advanced
	GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU
	CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.2 Releases
	MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems
	MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems
	Slide Number 116
	MVAPICH2-GDR 2.3.2
	Overview of MVAPICH2-GDR Features
	Slide Number 119
	Slide Number 120
	Device-to-Device Performance on OpenPOWER (NVLink2 + Volta)
	Tuning GDRCOPY Designs in MVAPICH2-GDR
	Tuning Loopback Designs in MVAPICH2-GDR
	Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR
	Slide Number 125
	Overview of MVAPICH2-GDR Features
	Slide Number 127
	Slide Number 128
	Overview of MVAPICH2-GDR Features
	Slide Number 130
	MPI Datatype support in MVAPICH2
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	MVAPICH2-GDR: Enhanced Derived Datatype
	Overview of MVAPICH2-GDR Features
	Slide Number 138
	Slide Number 139
	Overview of MVAPICH2-GDR Features
	Deep Learning: New Challenges for Runtimes
	Data Parallel Deep Learning and MPI Collectives
	Distributed Training using TensorFlow (TF)
	Scalable TensorFlow using Horovod, MPI, and NCCL
	MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI
	MVAPICH2-GDR vs. NCCL2 – Allreduce Operation
	MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
	MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale
	Distributed Training with TensorFlow and MVAPICH2-GDR
	Distributed Training with TensorFlow and MVAPICH2-GDR
	MVAPICH2 Software Family
	Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)
	Slide Number 153
	MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)
	MVAPICH2 Software Family
	Overview of OSU INAM
	OSU INAM Features
	OSU INAM Features (Cont.)
	OSU Microbenchmarks
	Applications-Level Tuning: Compilation of Best Practices
	Amber: Impact of Tuning Eager Threshold
	MiniAMR: Impact of Tuning Eager Threshold
	SMG2000: Impact of Tuning Transport Protocol
	Neuron: Impact of Tuning Transport Protocol
	HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model
	LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model
	MILC: Impact of User-mode Memory Registration (UMR) based tuning
	HOOMD-blue: Impact of GPUDirect RDMA Based Tuning
	Application Scalability on Skylake and KNL with Omni-Path
	SPEC MPI 2007 Benchmarks: Broadwell + InfiniBand��
	MVAPICH2 – Plans for Exascale
	Commercial Support for MVAPICH2, HiBD, and HiDL Libraries
	Silver ISV Member for the OpenPOWER Consortium
	Funding Acknowledgments
	Personnel Acknowledgments
	Thank You!

