MVAPICH

)

MPI, PGAS and Hybrid MPI+PGAS Library

Latest version of the slides available at

http://cse.osu.edu/~subramon/mugl19-mvapich2-tutorial.pdf

How to Boost the Performance of Your HPC/AI Applications with
MVAPICH2 Libraries?

A Tutorial at MUG’19

The MVAPICH Team
The Ohio State University

http://mvapich.cse.ohio-state.edu/

http://mvapich.cse.ohio-state.edu/
http://cse.osu.edu/%7Esubramon/mug19-mvapich2-tutorial.pdf

Parallel Programming Models Overview

P1 P2 P3 P1 <> P2 <> P3 P1 <> P2 R P3
I I
i i i J, I i
Logical shared memory
Shared Memory Memory Memory Memory Memory 1| Memory |1 Memory
| I
| |
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface) Global Arrays, UPC, Chapel, X10, CAF, ...

* Programming models provide abstract machine models

e Models can be mapped on different types of systems

— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

e PGAS models and Hybrid MPI+PGAS models are gradually receiving
importance

Network Based Computing Laboratory

Brief History of Deep Learning (DL)

ARTIFICIAL

INTELLIGENCE

e e MACHINE
LEARNING

DEEP

’

PA

A

1950°s 1960°s 1970°s 1980°s 1990°s 2000's 2010°s
Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocac

Network Based Computing Laboratory MUG’19 3

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

Understanding the Deep Learning Resurgence

e Deep Learning is a sub-set of Machine
Learning

— But, it is perhaps the most radical and
revolutionary subset

Deep learning Example:
Shallow

autoencoders

— Automatic feature extraction vs. hand-

Example:
Logistic
Tegression

Example:

Example: Knowledge

crafted features MLDPs

hases

e Deep Learning

Representation learning

— A renewed interest and a lot of hype!

Machine learning

— Key success: Deep Neural Networks (DNNs)

— Everything was there since the late 80s
except the “computability of DNNs”

Courtesy: http://www.deeplearningbook.org/contents/intro.html

Network Based Computing Laboratory

http://www.deeplearningbook.org/contents/intro.html

Deep Learning, Many-cores, and HPC

e NVIDIA GPUs are the main driving force for faster training of DL models
— The ImageNet Challenge - (ILSVRC)
— 90% of the ImageNet teams used GPUs in 2014*
— Deep Neural Networks (DNNs) like AlexNet, GooglLeNet, and VGG are used

— A natural fit for DL due to the throughput-oriented nature

e Inthe High Performance Computing (HPC) arena
— 124/500 Top HPC systems use NVIDIA GPUs (Jun ’19)
— CUDA-Aware Message Passing Interface (MPI)

@ NVIDIA Volta
@ Nvidia Pascal
Nvidia Kepler
@ Intel Xeon Phi
@ Nvidia Fermi

— NVIDIA Fermi, Kepler, Pascal, and Volta architecture
— DGX-1 (Pascal) and DGX-2 (Volta)

e Dedicated DL supercomputers

Accelerator/CP
Performance Share
www.top500.org

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

Network Based Computing Laboratory

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/

Supporting Programming Models for Multi-Petaflop and
Exaflop Systems: Challenges

Application Kernels/Applications (HPC and DL)

Middleware Co-Design
Opportunities
Programming Models and Challenges
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, across Various

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc. Layers

Communication Library or Runtime for Programming Models Performance

Point-to-point Collective Energy- Synchronization 1/0 and Fault Scalability

Communication Communication Awareness and Locks File Systems Tolerance vre
Resilience
Networking Technologies Multi-/Many-core Accelerators
Architectures (GPU and FPGA) \ J

Network Based Computing Laboratory

Designing (MPI+X) for Exascale

e Scalability for million to billion processors
— Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

e Scalable Collective communication
— Offloaded
— Non-blocking
— Topology-aware

e Balancing intra-node and inter-node communication for next generation multi-/many-core
(128-1024 cores/node)

— Multiple end-points per node

e Support for efficient multi-threading
e |ntegrated Support for GPGPUs and Accelerators
e Fault-tolerance/resiliency
e QoS support for communication and 1/O
e Support for Hybrid MPI+PGAS programming

e MPI+ OpenMP, MPI + UPC, MPI + OpenSHMEM, CAF, MPI + UPC++...
e Virtualization
e Energy-Awareness

Network Based Computing Laboratory

Overview of the MVAPICH2 Project

e High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
— MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
— MVAPICH2-X (MPI + PGAS), Available since 2011
— Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
— Support for Virtualization (MVAPICH2-Virt), Available since 2015 TR
— Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 ﬂw%‘:‘

— Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 ;Zi \\\ 1 8 Y &
i N ears

— Used by more than 3,025 organizations in 89 countries

— More than 563,000 (> 0.5 million) downloads from the OSU site directly ! ‘ h \ Counting!
— Empowering many TOP500 clusters (Nov ‘18 ranking) 2007_2079

e 31 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

e 5t 448, 448 cores (Frontera) at TACC

e 8t 391,680 cores (ABCI) in Japan

e 15t 570,020 cores (Neurion) in South Korea and many others

— Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

— http://mvapich.cse.ohio-state.edu Partner in the TACC Frontera System

e Empowering Top500 systems for over a decade

i

N

7

\
\

=

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/

Architecture of MVAPICH2 Software Family (for HPC and DL)

High Performance Parallel Programming Models

Message Passing Interface PGAS Hybrid --- MPI + X
(MPI) (UPC, OpenSHMEM, CAF, UPC++) (MPI1 + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms
Point-to- . _ Remote . .
point CO"E(.:tIVES Job Startup S Memory . /0 and Fault Virtualization AEINE In;'t:pelctl?
Primitives Algorithms Awareness Access File Systems Tolerance Messages n nalysis
Support for Modern Networking Technology Support for Modern Multi-/Many-core Architectures
(InfiniBand, iWARP, RoCE, Omni-Path) (Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)
Transport Protocols Modern Features Transport Mechanisms Modern Features
RC | XRC | UuD | DC sHARP2' | opp | R | Mult shared "1 cma | wsumem | xPMEM MCDRAM* | NVLink | CAPI®
Iov | Rail Memory n
* Upcoming

Network Based Computing Laboratory

Strong Procedure for Design, Development and Release

e Research is done for exploring new designs
e Designs are first presented to conference/journal publications
e Best performing designs are incorporated into the codebase

e Rigorous Q&A procedure before making a release
— Exhaustive unit testing
— Various test procedures on diverse range of platforms and interconnects
— Performance tuning
— Applications-based evaluation

— Evaluation on large-scale systems

e Even alpha and beta versions go through the above testing

Network Based Computing Laboratory

MVAPICH2 Software Family

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), MVAPICH2-X
OSU INAM (InfiniBand Network Monitoring and Analysis),

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric | MVAPICH2-X-AWS

Adapter (EFA)

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning | MVAPICH2-GDR
Applications

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, MVAPICH2-EA
RoCE (v1/v2)

MPI Energy Monitoring Tool OEMT
InfiniBand Network Analysis and Monitoring OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance OMB

Network Based Computing Laboratory

MVAPICH2 2.3.2

e Released on 08/09/2019
e Major Features and Enhancements
— Improved performance for inter-node communication
— Improved performance for Gather, Reduce, and Allreduce with cyclic hostfile
- - Thanks to X-ScaleSolutions for the patch
— Improved performance for intra-node point-to-point communication
— Add support for Mellanox HDR adapters
— Add support for Cascade lake systems

— Add support for Microsoft Azure platform

e Enhanced point-to-point and collective tuning for Microsoft Azure
— Add support for new NUMA-aware hybrid binding policy
— Add support for AMD EPYC Rome architecture
— Improved multi-rail selection logic
— Enhanced heterogeniety detection logic

— Enhanced point-to-point and collective tuning for AMD EPYC Rome, Frontera@TACC, Mayer@Sandia, Pitzer@OSC,
Summit@ORNL, Lassen@LLNL, and Sierra@LLNL systems

— Add multiple PVARs and CVARs for point-to-point and collective operations

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2 Features

Job start-up

e Point-to-point Inter-node Protocol

e Transport Type Selection

e Multi-rail

* Process Mapping and Point-to-point Intra-node Protocols
e Collectives

e MPI_T Support

Network Based Computing Laboratory

Towards High Performance and Scalable Startup at Exascale
e Near-constant MPl and OpenSHMEM

A

o > O - @[(© . @ On-demand initialization time at any process count

S c g .

22 . Connection e 10x and 30x improvement in startup time
= © .

5 § @ PMIX_Ring of MPI and OpenSHMEM respectively at
ERs | PGAS — State of the art @ PMIX_lbarrier 16,384 processes

v +

o S .

28| (M) WPi-state of the art @ PMIX lallgather ~® Memory consumption reduced for remote
ES| — endpoint information by O(processes per
= |0 | PGAS/MPI - Optimized @ Shmem based PMI node)

»
»

Job Startup Performance e 1GB Memory saved per node with 1M

processes and 16 processes per node

@ On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K
Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS '15)

@ PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st
European MPI Users' Group Meeting (EuroMPI/Asia ’'14)

@@ Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

@ SHMEMPMI - Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda,
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16)

Network Based Computing Laboratory MUG’19

Startup Performance on KNL + Omni-Path

MPI_Init - TACC Stampede-KNL MPI_Init & Hello World - Oakforest-PACS
200 25
—¢Intel MPI 2018 beta _ Hello World (MVAPICH2-2.3a) 21s
m 3520
§ —o—MVAPICH2 2.3a 8.8x § I —o—-MPI_Init (MVAPICH2-2.3a)
()] (%]
< 100 =
= < 10
_| ©
o (]
P 50 £ 5 M 585
|_
0 L 0
< 0 o) (@] h4 h4 h4 b4 g ¥ he
& \,)ib rf?‘o (o,\’)/ N ,\(/o% ,);f} (ogk &%,\‘/b&,{,b’f’b © 8§ B oS + & F © L8 o ¥
Number of Processes

Number of Processes

e MPI_Init takes 51 seconds on 231,956 processes on 3,624 KNL nodes (Stampede — Full scale)
e 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)

e At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
e All numbers reported with 64 processes per node

New designs available in MVAPICH2-2.3a and as patch for SLURM-15.08.8 and SLURM-16.05.1

Network Based Computing Laboratory MUG’19

Startup Performance on TACC Frontera

MPI_Init on Frontera

Number of Processes

5000 .
) 4500 —a—Intel MPI 2019 DS
c /
g 4000 —» MVAPICH2 2.3.2 »39s
@ 3500 7
= 3000 /
= /
S 2500 /.
c 2000 —— A
J ”
< 1500 — =—m g m =T -
', 1000 _.. &
pu— - - = Ir-—"’—_.‘—‘———-l"—"‘—L. -

ig Sog .-‘-I——.- |—-_-:_. T T T T T T T

56 112 224 448 896 1792 3584 7168 14336 28672 57344

e MPIL_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
e All numbers reported with 56 processes per node

New designs available in MVAPICH2-2.3.2

MUG’19

Network Based Computing Laboratory

On-demand Connection Management for OpenSHMEM+MPI

Performance of OpenSHMEM

Breakdown of OpenSHMEM Startup Initialization and Hello World

= 32 . 120 _
T 35 B Connection Setup 0 Hello World - Static
S O PMI Exchange § 100
§ 75 g § —»- |nitialization - Static
g B Memory Registration »w 380
3 20 yrEe ey —+—Hello World - On-demand
= I Shared Memory Setup 2 60 ~
= 15 s —e— Initialization - On-demand /
o W Other o 40 /
lg 10 £ n
5 =20 / _
—; E E E O B [[[[[:I‘_I _I = _I -
0 |
64 128 256 512 1|< 2K 4K 16 32 64 128256512 1K 2K 4K 8K
Number of Processes Number of Processes

e Static connection establishment wastes memory and takes a lot of time

e On-demand connection management improves OpenSHMEM initialization time by 29.6 times
e Time taken for Hello World reduced by 8.31 times at 8,192 processes

e Available since MVAPICH2-X 2.1rcl

Network Based Computing Laboratory

How to Get the Best Startup Performance with MVAPICH2?

e MV2_HOMOGENEOUS_CLUSTER=1 //Set for homogenous clusters
e MV2_ON_DEMAND_UD_INFO_EXCHANGE=1 //Enable UD based address exchange

Using SLURM as launcher Using mpirun_rsh as launcher
e Use PMI2 e MV2_MT_DEGREE
— ./configure --with-pm=slurm --with-pmi=pmi2 — degree of the hierarchical tree used by
— srun --mpi=pmi2 ./a.out mpirun_rsh
e Use PMI Extensions e MV2_FASTSSH_THRESHOLD
— Patch for SLURM available at — #nodes beyond which hierarchical-ssh scheme is
http://mvapich.cse.ohio-state.edu/download/ used
— Patches available for SLURM 15, 16, and 17 . MVZ_NPROCS_THRESHOLD
— PMI Extensions are automatically detected by . . o
MVAPICH2 — #nodes beyond which file-based communication
is used for hierarchical-ssh during start up

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/download/

Overview of MVAPICH2 Features

e Point-to-point Inter-node Protocol

e Transport Type Selection

e Multi-rail

* Process Mapping and Point-to-point Intra-node Protocols
e Collectives

e MPI_T Support

Network Based Computing Laboratory

One-way Latency: MPI over IB with MVAPICH2

Large Message Latency

Small Message Latency
1.8 120
—& -TrueScale-QDR
1.1 /
- A ’—‘/7 - 4= ConnectlIB-DualFDR /
el bl —e—ConnectX-4-EDR

g 1 g o
= ~ 60 —t— O mni=Path
> 0.8 | 1.15 > /
g 1.01 5 —e— ConnectX-6 HDR / »

0.2

0 T T T T T T T T T 1 O 1

A T - T S A S A

Message Size (bytes) Message Size (bytes)

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (lvyBridge) Intel PCl Gen3 with IB switch
ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with IB Switch
Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with Omni-Path switch
ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

MUG’19

Network Based Computing Laboratory

Bandwidth: MPI over IB with MVAPICH2

Unidirectional Bandwidth

30000
24,532
25000 -
s
Q
2 20000
(7))
Q
z
s 15000 12,590
<
2 12,366
E 10000 1 oes
c
4] - e - @
@ 5000 6,356
- = — &
3,373
O n T T

4 16

Message Size (bytes)

64 256 1024 4K 16K 64K 256K 1M

Bidirectional Bandwidth

60000
—m -TrueScale-QDR 48,027
50000 =@ ConnectX-3-FDR
o
Q - 4= ConnectIB-DualFDR //.
~ 40000
4“;’. —e— ConnectX-4-EDR
2 20000 21,983
= —&— Omni-Path / 24,136
=
=) _ e o
§ 20000 —&— ConnectX-6 HDR pa— e
£ / 21,227
(© - —@
R
 w 6,228
0 I T T T T T T 1

16 64 256 1024 4K 16K 64K 256K 1M

Message Size (bytes)

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch
ConnectX-3-FDR - 2.8 GHz Deca-core (lvyBridge) Intel PCl Gen3 with IB switch
ConnectlIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with IB switch
ConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with IB Switch
Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCl Gen3 with Omni-Path switch
ConnectX-6-HDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

Network Based Computing Laboratory

MUG’19

Inter-node Point-to-Point Tuning: Eager Thresholds

55 Eager vs Rendezvous 18 Impact of Eager Threshold
M Eager Rendezvous 16 eager_th=1K
20 - - eager_th=2K r
14 —A—eager_th=4K /
- Eager threshold \ -~ 12 »—cager th=8K
> 15 = B
- > 10 eager_th=16K
c e 8 —0—eager_th=32K
S 10 9
© ©
8 - 6
5 4
2
0 O T T T T T T T T T T T T T T T T T
1 2 4 8 16 32 64 128256512 1K 2K 4k 8k 16k 32k 0 1 2 4 8 16 32 64128256512 1K 2K 4K 8K 16K32K64K
Message Size (Bytes) Message Size (Bytes)

e Switching Eager to Rendezvous transfer

e Default: Architecture dependent on common platforms, in order to achieve both best performance and
memory footprint

e Threshold can be modified by users to get smooth performance across message sizes
e mpirun_rsh —np 2 —hostfile hostfile MV2_IBA_EAGER_THRESHOLD=32K a.out

e Memory footprint can increase along with eager threshold

Network Based Computing Laboratory MUG’19

Intra-node Point-to-Point Performance on OpenPower

Intra-Socket Small Message Latency Intra-Socket Large Message Latency
1 100
——MVAPICH2-2.3.1 ——MVAPICH2-2.3.1
. 80
’UT (%))
=) = SpectrumMPI-2019.02.07 =
> > 60 —SpectrumMPI-2019.02.07
g 05 g
8 8
0.22us
0
0 1 > 4 8 16 32 64 128 256 512 1K oK 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Intra-Socket Bandwidth Intra-Socket Bi-directional Bandwidth
40000 40000
. —— MVAPICH2-2.3.1 Q ——MVAPICH2-2.3.1
L m
2 30000 =3
E = SpectrumMPI-2019.02.07 - = SpectrumMPI-2019.02.07
< S
S S
S 20000 5 20000
©
5 @
“ 10000 s
0 0
1 8 64 512 4K 32K 256K 2M 1 8 64 512 4K 32K 256K 2M

Platform: Two nodes of OpenPOWER (POWER9-ppc64le) CPU using Mellanox EDR (MT4121) HCA

Network Based Computing Laboratory MUG’19

Intra-node Point-to-point Performance on ARM Cortex-A72

Small Message Latency Large Message Latency
1.2 700
——MVAPICH2-2.3 ——MVAPICH2-2.3
1 600
g 5 500
< 038 =
c § 400
£ 06 =
3 7 0.27 micro-second 300
0.4 (1 bytes) 500
a—
0.2 100
0 0
0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Bandwidth Bi-directional Bandwidth
10000 16000
iy e
~ ——MVAPICH2-2.3 S 14000 ——MVAPICH2-2.3
s 8000 2 12000
£ g
T 6000 = 10000
3 S 8000
g 4000 g 6000
2 4000
2000
2000
0 0
HNTOONYTNONXY XY XXX YXXXSSS 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Platform: ARM Cortex A72 (aarch64) processor with 64 cores dual-socket CPU. Each socket contains 32 cores.

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2 Features

e Transport Type Selection

e Multi-rail

* Process Mapping and Point-to-point Intra-node Protocols
e Collectives

e MPI_T Support

Network Based Computing Laboratory

Hybrid (UD/RC/XRC) Mode in MVAPICH2

Performance with HPCC Random Ring

_ e Both UD and RC/XRC have benefits
OUD MHybrid ORC

6 . '
_ e a0 ’* 289 ’* 20% Hybrid for the best of both
T:’ * n e Enabled by configuring MVAPICH2 with the
g2 u —enable-hybrid

0 - | | | .

Available since MVAPICH2 1.7 as integrated
interface

128 256 512 1024

Number of Processes

MV2_USE_UD_HYBRID * Enable / Disable use of UD transport Enabled * Always Enable
in Hybrid mode

MV2_HYBRID_ENABLE_THRESHOLD_SIZE * Job size in number of processes beyond which 1024 * Uses RC/XRC connection until
hybrid mode will be enabled job size < threshold
MV2_HYBRID_MAX_RC_CONN * Maximum number of RC or XRC 64 * Prevents HCA QP cache
connections created per process thrashing

* Limits the amount of connection memory

e Refer to Running with Hybrid UD-RC/XRC section of MVAPICH2 user guide for more information
e http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-690006.11

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2 Features

e Multi-rail
* Process Mapping and Point-to-point Intra-node Protocols
e Collectives

e MPI_T Support

Network Based Computing Laboratory

MVAPICH2 Multi-Rail Design

Multi-Rail
Scheduling

Rail Rail
Binding Sharing

; ‘ Found Robin \ Small Message Striping for
Lacr Dctmecad (Detfanult) Scheduling Larger Messages

Bunch Scatter Custom | Rnur_m | | Use First |
F.obin

e What s a rail?
— HCA, Port, Queue Pair

e Automatically detects and uses all active HCAs in a system
— Automatically handles heterogeneity

e Supports multiple rail usage policies
— Rail Sharing — Processes share all available rails

— Rail Binding — Specific processes are bound to specific rails

Network Based Computing Laboratory MUG’19

Performance Tuning on Multi-Rail Clusters

Impact of Default Message Striping on Bandwidth Impact of Default Rail Binding on Message Rate Impact of Advanced Multi-rail Tuning on Message
. 8 Rate
7000 3 , , F -
= 6000 == Single-Rail 2 6 = Single-Rail T Tt AT
2 o & Dual-Rail 2 & 6‘ —— —_—
= 5000 Btrat-Rait T W 5 o] ocarter
S 4000 98% ﬁ § 4 130%) o 5 Bunch
£ 3000 R 15 41
£ 2000 22 2 S T——\
& 1000 / = 1 N\ E k
0 + i f% T T T T T T T - 0 T T T T T \I i i (— 0 T T T T T ! ! ! ! ! !
N b X o o o L - No% o (& N % b (X o o - b
x\oqg)xv.\b‘ov@wo&& xb@b&\‘»*\p*b»*@df\@& Nb,ﬁ)\v.;obv{;o@@
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

Two 24-core Magny Cours nodes with two Mellanox ConnectX QDR adapters
Six pairs with OSU Multi-Pair bandwidth and messaging rate benchmark

MV2_IBA_HCA * Manually set the HCA to be used Unset * To get names of HCA
ibstat | grep “ACA”
MV2_DEFAULT_PORT e Select the port to use on a active multi port HCA 0 * Set to use different port
MV2_RAIL SHARING_LARGE_MSG_THRESHOLD ¢ Threshold beyond which striping will take place 16 Kbyte
MV2_RAIL_SHARING_POLICY ¢ Choose multi-rail rail sharing / binding policy Rail Binding in e Advanced tuning can
e For Rail Sharing set to USE_FIRST or ROUND_ROBIN Round Robin result in better
 Set to FIXED_MAPPING for advanced rail binding options mode performance
MV2_PROCESS_TO_RAIL_MAPPING ¢ Determines how HCAs will be mapped to the rails BUNCH Options: SCATTER
and custom list

e Refer to Enhanced design for Multiple-Rail section of MVAPICH2 user guide for more information

e http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-700006.12

Network Based Computing Laboratory MUG’19

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-700006.12

Overview of MVAPICH2 Features

e Process Mapping and Point-to-point Intra-node Protocols
e Collectives

e MPI_T Support

Network Based Computing Laboratory

Process Mapping support in MVAPICH2

Process-Mapping support in
MVAPICH2

(available since v1.4)

/\

Preset Binding Policies | User-defined binding
. bunch _
Policy—— (Defaut] scatter hybrid MPI rank-to-core binding
efau
core .
(Defauh) socket | numanode < Granularity
efau

MVAPICH2 detects processor architecture at job-launch

Network Based Computing Laboratory

Preset Process-binding Policies — Bunch

e “Core” level “Bunch” mapping (Default)
— MV2_CPU_BINDING_POLICY=bunch

socketO socketl socketO socketl

corel core2 corel core3 coreO corel corel core3

SIOHI®I® (OO

cored coreb cores cored cored coreb cores core?d

e “Socket/Numanode” level “Bunch” mapping
— MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=bunch

socketD socketl socketO socketl

910
Y
OO
OO

rankO/rankl/rank2/rank3

Network Based Computing Laboratory

Preset Process-binding Policies — Scatter

e “Core” level “Scatter” mapping

— MV2_CPU_BINDING_POLICY=scatter

socketd socketl
cored corez2 corel core3
cored coreb cores core/

scatter

—

socketO

socketl

corel core?

O
O¢
0@
0@

cored coreb

corel core3

cores cored

e “Socket/Numanode” level “Scatter” mapping
— MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=scatter

socketd

socketl

Network Based Computing Laboratory

bunch

—

socketO

socketl

1010}

rankO/rank2

rankl/rank3

Process and thread binding policies in hybrid MPI+Threads

e A new process binding policy — “hybrid”
— MV2_CPU_BINDING_POLICY = hybrid

e A new environment variable for co-locating Threads with MPI Processes
— MV2_THREADS_PER_PROCESS = k
— Automatically set to OMP_NUM_THREADS if OpenMP is being used

— Provides a hint to the MPI runtime to spare resources for application threads.

e New variable for threads bindings with respect to parent process and architecture

— MV2_HYBRID BINDING_POLICY= {bunch|scatter|linear|compact|spread|numa}
e Linear — binds MPI ranks and OpenMP threads sequentially (one after the other)
— Recommended to be used on non-hyper threaded systems with MPI+OpenMP
e Compact — binds MPI rank to physical-core and locates respective OpenMP threads on hardware threads

— Recommended to be used on multi-/many-cores e.g., KNL, POWERS, and hyper-threaded Xeon, etc.

Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads)

e MPI Processes =4, OpenMP Threads per Process =4
e MV2_CPU_BINDING_POLICY = hybrid

e MV2_THREADS_PER_PROCESS =4

e Detects hardware-threads support in architecture

e Assigns MPI ranks to physical cores and respective OpenMP Threads to HW threads

Network Based Computing Laboratory

Eore) ()
(aup) ()

Eored) (1)
(o) ()

@ored) (w0
(o) @)

CICD
A

MV2_THREADS BINDING_POLICY = compact

>

RankO

Rank1

@) ()
(o) G

)
© @

o) (w0
(o) @)

COIC
(o) @)

Rank2

Rank3

Binding Example in Hybrid (MPI+Threads) ---- Cont’d
e MPI Processes =4, OpenMP Threads per Process =4

e MV2_CPU_BINDING_POLICY = hybrid
e MV2_THREADS_PER_PROCESS = 4

e MV2_THREADS_BINDING_ POLICY = linear
RankO Rankl

Rank2

Rank3

e MPI Rank-0 with its 4-OpenMP threads gets bound on Core-0 through Core-3, and so on

Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads) ---- Cont’d
e MPI Processes = 16

e Example: AMD EPYC 7551 processor with 8 NUMA domains
e MV2_CPU_BINDING_POLICY = hybrid

e MV2_HYBRID_BINDING_POLICY = numa

rankO rank8
\ | @

oo comt

numa node 0 numa node 0

NUMA “ “

0 o s o
numanod ' numa nod

numa node 3, 4, . numa node 3, 4, .

rank2 rank10/

Network Based Computing Laboratory

User-Defined Process Mapping

e User has complete-control over process-mapping

To run 4 processes on cores 0, 1, 4, 5:
— S mpirun_rsh -np 4 -hostfile hosts MV2 CPU_MAPPING=0:1:4:5 ./a.out

()

e Use’, or‘’ tobind to a set of cores:

— Smpirun_rsh -np 64 -hostfile hosts MV2_CPU_MAPPING=0,2-4:1:5:6 ./a.out
e |s process binding working as expected?

— MV2_SHOW_CPU_BINDING=1
e Display CPU binding information
e Launcher independent
e Example

— MV2_SHOW_CPU_BINDING=1 MV2_CPU_BINDING_POLICY=scatter

RANK:0 CPU_SET: O
RANK:1 CPU_SET: 8

e Refer to Running with Efficient CPU (Core) Mapping section of MVAPICH2 user guide for more information
e http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3rc1-userguide.html#x1-600006.5

Network Based Computing Laboratory MUG’19

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-600006.5

Overview of MVAPICH2 Features

e Collectives

e MPI_T Support

Network Based Computing Laboratory

Collective Communication in MVAPICH2

Blocking and Non-Blocking
Collective Algorithms in MV2

e | T ¥
' Conventional Multi/Many-Core
(Flat) Aware Designs

\ 4 \ 4

Inter-Node Intra-Node
{ Communication J {Communication]
I
+ \ 4
Point to Hardware Point to Point Direct Kernel

[Point J {Multicast} [SHARP] [RDMA J (SHMEM, Direct Shared Assisted
l |] LiIMIC, CMA”, Memory (CMA®,

' XPMEM®) XPMEM®, LiMIC)

Designed for Performance & Overlap

Run-time flags:

All shared-memory based collectives : MV2_USE_SHMEM _COLL (Default: ON)
Hardware Mcast-based collectives : MV2_USE_MCAST (Default : OFF)
CMA and XPMEM-based collectives are in MVAPICH2-X

Network Based Computing Laboratory

Hardware Multicast-aware MPI_Bcast on TACC Stampede

Small Messages (102,400 Cores) 85% Large Messages (102,400 Cores)
35 —+—Default 7 igo —*H
Tg 30 === Vulticast /\‘—(Tg 350 =m=Multicast /
255 M = 300 ~/
> > 250 V4 //’

20 2 500

c

£ 150 //(/

- 100

50
O N I I I I I I
2 8 32 128 512 2K 8K 32K 128K
Message Size (Bytes) Message Size (Bytes)
16 Byte Message 200 32 KByte Message
30
(o)
80% —o—Default

25 +——e=Default e o
20 =m-Multicast /

150 /\
—=-Multicast /\‘__/ N
>0 _";tzl/;/l/ e e I S

Latency (us)
[EY
o
o

Latency (us)
[y
Ul

10
5
0 0 T T T T T T T T T
™
S IR R N N ST G R N S
Number of Nodes
Number of Nodes

e MCAST-based designs improve latency of MPI_Bcast by up to 85%
e Use MV2_USE_MCAST=1 to enable MCAST-based designs

MUG’19

Network Based Computing Laboratory

MPI_Scatter - Benefits of using Hardware-Mcast

——Scatter-Default -=-Scatter-Mcast
512 Processes 1,024 Processes

18
_16 57% 25 %
5 12 e 3 20 — /_,
> 10 o =15
S 8 c /-/
® 6 210
- 4 ° -/

’) 5

O [[[[O I I I I

Message Length (Bytes) Message Length (Bytes)

* Enabling MCAST-based designs for MPI_Scatter improves small message up to 75%

MV2_USE_MCAST =1 Enables hardware Multicast features Disabled

--enable-mcast Configure flag to enable Enabled

Network Based Computing Laboratory MUG’19

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

= Management and execution of MPI operations in the network B &
by USing SHArP Switch/Router
@ HcA '
= Manipulation of data while it is being transferred in the switch v ,9[‘“-“:&%
A 7 N0e
network S S e
. . , . 5> & & 6
= SHATrP provides an abstraction to realize the reduction /AN /AN /AN /AN
_ VU VO WY G
O p e rat I O n Physical Topology

Physical Network Topology*

= Defines Aggregation Nodes (AN), Aggregation Tree, and Aggregation

G rou pS * SHArP Tree Aggregation Node
= AN logic is implemented as an InfiniBand Target Channel Adapter Y SHAP Tree Endnode
(TCA) integrated into the switch ASIC *

SHArP Tree Root

= Uses RC for communication between ANs and between AN and hosts

in the Aggregation Tree *

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction Logical SHArP Tree*

Network Based Computing Laboratory MUG’19

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

Benefits of SHARP Allreduce at Application Level
Avg DDOT Allreduce time of HPCG

0.35
B MVAPICH2

©
w

0.25 MVAPICH2-SHArP

©
o

0.15

o
=

Latency (seconds)

0.05

(4,28) (8,28) (16,28)
(Number of Nodes, PPN)

SHARP support available since MVAPICH2 2.3a

MV2_ ENABLE_SHARP=1 Enables SHARP-based collectives Disabled

--enable-sharp Configure flag to enable SHARP Disabled

e Refer to Running Collectives with Hardware based SHARP support section of MVAPICH2 user guide for more information

e http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html#x1-990006.26

MUG’19

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html#x1-990006.26

Problems with Blocking Collective Operations

Application Application Application Application
Process Process Process Process

. Computation
. Communication

e Communication time cannot be used for compute

— No overlap of computation and communication

— Inefficient

Network Based Computing Laboratory

Concept of Non-blocking Collectives B compuston

Application Application Application Application . Communication
Process Process Process Process

Communication Communication Communication Communication

Support Entity Support Entity Support Entity Support Entity
1 1 1 1
1 1 1 1
: 1 1 1
1
Schedule 1 Schedule | Schedule : Schedule :
Operation : Operation 1 Operation ' Operation |
1 1

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

¢ -—-—-=-=-====

e Application processes schedule collective operation
e Check periodically if operation is complete
e Overlap of computation and communication => Better Performance

e Catch: Who will progress communication

Network Based Computing Laboratory MUG’19

Non-blocking Collective (NBC) Operations

Enables overlap of computation with communication

Non-blocking calls do not match blocking collective calls

— MPI may use different algorithms for blocking and non-blocking collectives
— Blocking collectives: Optimized for latency

— Non-blocking collectives: Optimized for overlap

e A process calling a NBC operation

— Schedules collective operation and immediately returns

— Executes application computation code

— Waits for the end of the collective

e The communication progress by

— Application code through MPI_Test
— Network adapter (HCA) with hardware support
— Dedicated processes / thread in MPI library

There is a non-blocking equivalent for each blocking operation

(lI”

— Has an in the name

e MPI_Bcast -> MPI_lbcast; MPI_Reduce -> MPI_Ireduce

Network Based Computing Laboratory

How do | write applications with NBC?

void main()

{
MPI_Init()
MPI_lalltoall(...)

Computation that does not depend on result of Alltoall
MPI_Test(for lalltoall) /* Check if complete (non-blocking) */
Computation that does not depend on result of Alltoall

MPI_Wait(for lalltoall) /* Wait till complete (Blocking) */

MPI_Finalize()

Network Based Computing Laboratory

P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives

Small Scale Runs Large Scale Runs

_16 _ 14 _
B 14 M Default MW RDMA-Aware M Default-Thread “ M Default B RDMA-Aware 19%
§ 12 § +
a & 10
o 10 o
o o 8
S 8 S
5o ;¢
2 44 2 4
o))
S 0 S o

128 256 >12 128 256 512 1K 2K 4K 8K

Number of Processes Number of Processes

Weak scaling experiments; problem size increases with job size

RDMA-Aware delivers 19% improvement over Default @ 8,192 procs

Default-Thread exhibits worst performance

— Possibly because threads steal CPU cycles from P3DFFT . . .
Y Y Will be available in future

— Do not consider for large scale experiments

Network Based Computing Laboratory

Evaluation of SHArP based Non Blocking Allreduce

MPI_lallreduce Benchmark

1 PPN*, 8 Nodes

= MVAPICH2 < B MVAPICH2 ® MVAPICH2-SHArP 1 PPN, 8 Nodes
c
m ? 2.3x E, 50
=38 MVAPICH2-SHArP o S s
e 7 : : % 40
Y = ') H 35
g C° 1 B s
Y S5 I ! = ‘é 30
@ T, ' j o0 [
o e : [e < 20
—+ =) 3 1 S £
= = 1 J 4 < 15
o < <
= £ 5) S
S = 10
e e
=)
o O 0 L — [
4 8 16 32 64 128 4 8 16 32 64 128

Message Size (Bytes) Message Size (Bytes)

e Complete offload of Allreduce collective operation to Switch helps to have
much higher overlap of communication and computation

Available since MVAPICH2 2.3a

*PPN: Processes Per Node

Network Based Computing Laboratory

Presentation Overview

e MPL_T Support

Network Based Computing Laboratory

MPI Tools Information Interface (MPI_T)

e Introduced in MPI 3.0 standard to expose internals of MPI to tools and applications
e Generalized interface — no defined variables in the standard
e \Variables can differ between
- MPI implementations
- Compilations of same MPI library (production vs debug)
- Executions of the same application/MPI library
- There could be no variables provided
e Control Variables (CVARS) and Performance Variables (PVARS)

 More about the interface: mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Network Based Computing Laboratory

Co-designing Applications to use MPI-T

Example Pseudo-code: Optimizing the eager limit dynamically:

MPIL_T _init_thread(..)

MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)

if (msg_size < MV2_EAGER_THRESHOLD + 1KB)
MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)

MPI_Send(..)

MPI_T _finalize(..)

Network Based Computing Laboratory

Performance Engineering Applications using MVAPICH2 and TAU

Network Based Computing Laboratory

Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of

performance and control variables

Get and display MPI Performance Variables (PVARs) made available by the runtime

in TAU

Control the runtime’s behavior via MPI Control Variables (CVARs)

Introduced support for new MPI_T based CVARs to MVAPICH?2

O MPIR_CVAR_MAX_INLINE_MSG_SZ, MPIR_CVAR_VBUF_POOL_SIZE,
MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE

TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for

uninstrumented applications

S. Ramesh, A. Maheo, S. Shende, A. Malony, H. Subramoni, and D. K. Panda, MPI

Performance Engineering with the MPI Tool Interface: the Integration of MVAPICH

and TAU, EuroMPI/USA ‘17, Best Paper Finalist
Available in MVAPICH2

VBUF usage without CVAR based tuning as displayed by ParaProf

MUG’19

)
— \ ;’:_:; \
R ;{;’:‘:—’ \

L

Profiling Report and User
Recommendations

Profiling and

Applications

Analysis

MVAPICH

Experiment
Cluster

VBUF usage with CVAR based tuning as displayed by ParaProf

Hiree Manvalue MinVilue Mranvalue Sl Dev. | KurmSampies Total Name Maxvalue Minvalue Meanvalue $id. Dev. Numamg: Total
3311058 1113056 3.313.056 a] 3,310,058 .

w2 vhul allocaad (Mumbar of UD VBUFs allocarsd) o o o o o 0 2_total_vbul_memaory (Total amount of memory in bytes uied for VEUFS) 1,815,056 1.815.056 1.815.056 0 1 LB15,056

v _ud_visuf_available (Number of UD VBUFs available) a o a] [} o mvi_ud_vbuf_allocated (Number of UD VBUFs alliocated) 0] L[] 0 1} 1}

vz _ud_vbuf_fresd (Number of UD VEUFs freed) a o o o [o 2 _ud_vbuf_available (Number of UD VBUFs available) 0 o o o [o

mivd _ud vl inuse (Number of UD VBUFs el] o 1] Le]]]

v _ud_vbul_max_use (Maximum number of UD VEUFs used) o o o o o o e\ e T (uebie of UD NBUR: freec) ¢ by by o a 0

v _vbuf_aliocated (Mumbaer of VEUFs allocated) 120 120 120 o 1 120 el _udd vbul inuse (Nember of UD VEUFs inuse) 0 @ L o e 0

v _whul_availahle (Number of VEUFs available) 255 55 5% o 1 255 mvi2_ud_vbuf_max_use (Maximum number of UD VEUFs used) 0 (1] 0 1] /] 1]

v _vbul_freed (Mumber of VBUFs freed) 25,545 25,5458 25,545] 1 25,545 mv2_vbul allocated (Number of VBUFs allocated) 160 160 160 [} 1 160

w2 _vbul_inuse {Number of VIILFS inuse) [[11 o 1 [=

w2 _wbul_max_use (Maximum number of VILFL used) [65 [13 o 1 3] 2 vbulavalabie (Number of VBUFs availabile) o 84 84 ° L 4

miim_caloc calls (Numbar of MPIT. calior calis) 89 89 89 0 1 a9 mvi _vbuf_freed (Number of VBUFs freed) 5479 5,479 5,479 0 1 5,479
2 _vbuf_imie (Number of VBUFS inuse) 66 66 66 0 1 66

Enhancing MPI_T Support

® Introduced support for new MPI_T based CVARs to MVAPICH?2
o MPIR_CVAR_MAX_INLINE_MSG_SZ
m Controls the message size up to which “inline” transmission of data is
supported by MVAPICH2
o MPIR_CVAR_VBUF_POOL_SIZE
m Controls the number of internal communication buffers (VBUFs)
MVAPICH?2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL _REDUCED_VALUE[1] ([2...n])
o MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
m Controls the number of VBUFs MVAPICH2 allocates when there are no
more free VBUFs available
o MPIR_CVAR_IBA EAGER_THRESHOLD
m Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages
e TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode
for uninstrumented applications

Network Based Computing Laboratory

PVARs Exposed by MVAPICH2

e0c®
File Options Help

x| TAU: ParaProf Manager

@ Applications
¢ 3 Standard Applications
+] Default App
+ . Default Exp
+ @ lulesh.ppk
@ TIME
o3 Default (jdbc:h2:thom

TrialField

Value

MPI_T PVARIOI: mem_allocated

Current level of allocated memory within the MPI library

{MPI_T PVAR[10]:

mv2_num_2level comm_success

Number of successful 2-level comm creations

{MPI_T PVAR[11]:

mv2_num_shmem_coll_calls

Number of times MV2 shared-memory collective calls were invoked

{MPL_T PVAR[12]:

mpit_progress_poll

CH3 RDMA progress engine polling count

IMPL_T PVAR[13I:

mv2_smp_read_progress_poll

CH3 SMP read progress engine polling count

J|MPI_T PVAR[14]:

mv2_smp_write_progress_poll

CH3 SMP write progress engine polling count

{MPI_T PVAR[L51:

mv2_smp_read_progress_poll_success

Unsucessful CH3 SMP read progress engine polling count

MPL_T PVAR[16]:

mv2_smp_write_progress_poll_succ...

Unsucessful CH3 SMP write progress engine polling count

{MPI_T PVAR[17]:

rdma_ud_retransmissions

CH3 RDMA UD retransmission count

MPL_T PVAR[18I:

mv2_coll_bcast_binomial

Number of times MV2 binomial bcast algorithm was invoked

JMPI_T PVAR[19]:

mv2_coll_bcast_scatter_doubling_all...

Number of times MV2 scatter+double allgather bcast algorithm was invoked

/MPI_T PVAR[1]: mem_allocated

Maximum level of memory ever allocated within the MPI library

[MPI_T PVARI[201:

mv2_coll_bcast_scatter_ring_allgather

Number of times MV2 scatter+ring allgather bcast algorithm was invoked

{MPIL_T PYARI21I:

mv2_coll_bcast_scatter_ring_allgath...

Number of times MV2 scatter+ring allgather shm bcast algorithm was invoked

IMPI_T PVAR[22

: mv2_coll_bcast_shmem

Number of times MV2 shmem bcast algorithm was invoked

{MPI_T PVAR[23

: mv2_coll_bcast_knomial_internode

Number of times MV2 knomial internade bcast algorithm was invoked

IMPI_T PVAR[24]:

mv2_coll_bcast_knomial_intranade

Number of times MV2 knomial intranode bcast algorithm was invoked

{MPI_T PVAR[25

: mv2_coll_bcast_mcast_internade

Number of times MV2 mcast internode bcast algorithm was invoked

IMPI_T PVAR[26]:

mv2_coll_bcast_pipelined

Number of times MV2 pipelined bcast algorithm was invoked

{MPI_T PVAR[27

: mv2_coll_alltoall_inplace

Number of times MV2 in-place alltoall algorithm was invoked

{MPI_T PVAR[28]:

mv2_coll_alltoall_bruck

Number of times MV2 brucks alltoall algorithm was invoked

JMPI_T PVAR[29]:

mv2_coll_alltoall_rd

Number of times MV2 recursive-doubling alltoall algorithm was invoked

JMPI_T PVAR[2]: num_malloc_calls

Number of MPIT_malloc calls

{[MPI_T PVAR[30]:

mv2_coll_alltoall_sd

Number of times MV2 scatter-destination allteall algorithm was invoked

JMPI_T PVAR[31]:

mv2_coll_alltoall_pw

Number of times MV2 pairwise allteall algorithm was invoked

JMPI_T PVARI32]:

mpit_alltocallv_mv2_pw

Number of times MV2 pairwise allteallv algorithm was invoked

J|MPI_T PVARI33]:

mv2_coll_allreduce_shm_rd

Number of times MV2 shm rd allreduce algorithm was invoked

{MPI_T PVAR[34]:

mv2_coll_allreduce_shm_rs

Number of times MV2 shm rs allreduce algorithm was invoked

MPL_T PVARI351:

mv2_coll_allreduce_shm_intra

Number of times MV2 shm intra allreduce algorithm was invoked

J|MPI_T PVARI36]:

mv2_coll_allreduce_intra_p2p

Number of times MV2 intra p2p allreduce algorithm was invoked

{MPLT PVARI3TL:

mv2_coll_allreduce 2Ivl

Number of times MV2 two-level allreduce algorithm was invoked

{MPI_T PVAR[38]:

mv2_coll_allreduce_shmem

Number of times MV2 shmem allreduce algorithm was invoked

|MPL_T PVAR[39]:

mv2_coll_allreduce_mcast

Number of times MV2 multicast-based allreduce algorithm was invoked

JAMPI_T PVARI3]: num_calloc_calls

Number of MPIT_calloc calls

{MPI_T PVARL401:

mv2_reg_cache_hits

Number of registration cache hits

JMPI_T PVAR[41]:

mv2_reg_cache_misses

Number of registration cache misses

MPL_T PVAR[42]:

mv2_vbuf_allocated

Number of VBUFs allocated

{MPI_T PVAR[43]:

mv2_vbuf allocated_array

Number of VBUFs allocated

{MPI_T PVAR[44]:

mv2_vbuf freed

Number of VBUFs freed

MPL_T PVAR[45T:

mv2_ud_vbuf_allocated

Number of UD VBUFs allocated

IMPI_T PVAR[46]:

mv2_ud_vbuf_freed

Number of UD VBUFs freed

{MPI_T PYAR[471:

mv2_vbuf free attempts

Number of time we attempted to free VBUFs

IMPI_T PVAR[48]:

mv2_vbuf free_attempt_success_time

\Average time for number of times we sucessfully freed VBUFs

IMPI_T PVAR[49]:

mv2_vbuf free attempt_success time

Average time for number of times we sucessfully freed VBUFs

|MPL_T PVAR[4]: num_memalign_calls

Number of MPIT_memalign calls

{MPI_T PVAR[50]:

mv2_vbuf allocate_time

‘Average time for number of times we allocated VBUFs

[MPI_T PVAR[51]:

mv2_vbuf allocate_time

\Average time for number of times we allocated VBUFs

NI

Network Based Computing Laborat

Courtesy: The TAU Team

G'1

CVARs Exposed by MVAPICHZ2

ece
File Options Help

%! TAU: ParaProf Manager

@ Applications

+ 1 Default App
+ I Default Exp
¢ @ lulesh.ppk

@ TIME

¢ 3 Standard Applications

o3 Default (jdbe:h2:fhom

TrialField

Value

|Local Time

2016-08-16T10:11:04-07:00

|MPI| Processor Name

cerberus.nic.uoregon.edu

|MPIR_CVAR_ABORT_ON_LEAKED_HANDLES

If true, MPI will call MPI_Abort at MPI_Finalize if any MPI object handles have been leaked. For example,...

|MPIR_CVAR_ALLGATHERV_PIPELINE_MSG_SIZE

The smallest message size that will be used for the pipelined, large-message, ring algorithm in the MPI_...

|MPIR_CVAR_ALLGATHER_LONG_MS5G_SIZE

For MPI_allgather and MPI_Allgatherv, the long message algorithm will be used if the send buffer size is ...

{MPIR_CVAR_ALLGATHER_SHORT _MSG_SIZE

For MPI_allgather and MPI_Allgatherv, the short message algorithm will be used if the send buffer size is...

{MPIR_CVAR_ALLREDUCE_SHORT_M5G_SIZE

the short message algorithm will be used if the send buffer size is <= this value {in bytes)

|MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE

the medium message algorithm will be used if the per-destination message size (sendcount*size{sendtyp. ..

|MPIR_CVAR_ALLTOALL_SHORT_M5G_SIZE

the short message algorithm will be used if the per-destination message size (sendcount*size{sendtype)) ...

{MPIR_CVAR_ALLTOALL THROTTLE

max no. of irecvsfisends posted at a time in some alltoall algorithms. Setting it to 0 causes all irecvsfisen...

{MPIR_CVAR_ASYNC_PROGRESS

If set to true, MPICH will initiate an additional thread to make asynchronous progress on all communicati...

|MPIR_CVAR_BCAST_LONG_MSG_SIZE

Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu...

|MPIR_CVAR_BCAST_MIN_PROCS

Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu...

{MPIR_CVAR_BCAST SHORT _MSG_SIZE

Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu...

{MPIR_CVAR_CH3_EAGER_MAX_MSG_SIZE

This cvar controls the message size at which CH3 switches from eager to rendezvous mode.

|MPIR_CVAR_CH3_ENABLE_HCOLL

If true, enable HCOLL collectives.

|MPIR_CVAR_CH3_INTERFACE_HOSTNAME

If non-NULL, this cvar specifies the IP address that other processes should use when connecting to this pr...

{MPIR_CVAR_CH3_NOLOGAL

If true, force all processes to operate as though all processes are located on ancther node. For example....

{MPIR_CVAR_CH3_ODD_EVEN_CLIQUES

If true, odd procs on a node are seen as local to each other, and even procs on a node are seen as local t...

|MPIR_CVAR_CH3_PORT_RANGE

The MPIR_CVAR_CH3_PORT_RANGE environment variable allows you to specify the range of TCP ports ...

{MPIR_CVAR_CH3_RMA_ACC_IMMED

Use the immediate accumulate optimization

{MPIR_CVAR_CH3_RMA_GC_NUM_COMPLETED

Thresheold for the number of completed requests the runtime finds before it stops trying to find more co...

{MPIR_CVAR_CH3_RMA_GC_NUM_TESTED

Threshold for the number of RMA requests the runtime tests before it stops trying to check more reques...

{MPIR_CVAR_CH3_RMA_LOCK_IMMED

Issue a request for the passive target RMA lock immediately. Default behavior is to defer the lock reque...

|MPIR_CVAR_CH3_RMA_MERGE_LOCK_OP_UNLOCK

Enable/disable an optimization that merges lock, op, and unlock messages, for single-operation passive ta...

{MPIR_CVAR_CH3_RMA_NREQUEST_NEW_THRESHOLD

Thresheold for the number of new requests since the last attempt to complete pending requests. Higher ...

{MPIR_CVAR_CH3_RMA_NREQUEST_THRESHOLD

Threshold at which the RMA implementation attempts to complete requests while completing RMA oper...

|MPIR_CVAR_CHOP_ERROR_STACK

If =0, truncate error stack output lines this many characters wide. If 0, do not truncate, and if <0 use a ...

|MPIR_CVAR_COLL_ALIAS_CHECK

Enable checking of aliasing in collective operations

{MPIR_CVAR_COMM_SPLIT_USE_QSORT

Use gsort(3) in the implementation of MPI_Comm_split instead of bubble sort.

{MPIR_CVAR_CTXID_EAGER_SIZE

The MPIR_CVAR_CTXID_EAGER_SIZE environment variable allows you to specify how many words in th...

|MPIR_CVAR_DEBUG_HOLD

If true, causes processes to wait in MPI_Init and MPI_Initthread for a debugger to be attached. Once the ...

{MPIR_CVAR_DEFAULT THREAD_LEVEL

Sets the default thread level to use when using MPI_INIT.

(MPIR_CVAR_DUMP_PROVIDERS

If true, dump provider information at init

{MPIR_CVAR_ENABLE_COLL_FT_RET

DEPRECATED! Will be removed in MPICH-3.2 Collectives called on a communicator with a failed process...

{MPIR_CVAR_ENABLE_SMP_ALLREDUCE

Enable SMP aware allreduce.

[MPIR_CVAR_ENABLE_SMP_BARRIER

Enable SMP aware barrier.

(MPIR_CVAR_ENABLE_SMP_BCAST

Enable SMP aware broadcast {See also: MPIR_CVAR_MAX_SMP_BCAST_MSG_SIZE)

{MPIR_CVAR_ENABLE_SMP_COLLECTIVES

Enable SMP aware collective communication.

|MPIR_CVAR_ENABLE_SMP_REDUCE

Enable SMP aware reduce.

; MPIR_CVAR_ERROR_CHECKING

If true, perform checks for errors, typically to verify valid inputs to MPI routines. Only effective whan M...

{MPIR_CVAR_GATHERV_INTER_SSEND_MIN_PROCS

Use Ssend (synchronous send) for intercommunicator MPI_Gathery if the "group B" size is >= this value....

{MPIR_CVAR_GATHER_INTER_SHORT_M5G_SIZE

use the short message algorithm for intercommunicator MPI_Gather if the send buffer size is < this value...

|MPIR_CVAR_GATHER_VSMALL_M5G_SIZE

use a temporary buffer for intracommunicator MPI_Gather if the send buffer size is < this value {in bytes...

{MPIR_CVAR_IBA_EAGER_THRESHOLD

0 (old) -> 204800 (new), This set the switch point between eager and rendezvous protocol

{MPIR_CVAR_MAX_INLINE_SIZE

This set the maximum inline size for data transfer

IMPIR_CVAR_MAX_SMP_ALLREDUCE_MS5G_SIZE

Maximum message size for which SMP-aware allreduce is used. A value of '0' uses SMP-aware allreduce ...

Network Based Computing Laborat UG’1

Courtesy: The TAU Team

Using MVAPICH2 and TAU

e To set CVARs or read PVARs using TAU for an uninstrumented binary:
% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],
MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000

% export PATH=/path/to/tau/x86_64/bin:SPATH

% mpirun -np 1024 tau_exec -T mvapich2, mpit .[/a.out

% paraprof

Courtesy: The TAU Team

Network Based Computing Laboratory MUG’19

VBUF usage without CVARSs

Name /\ MaxValue
mvZ_total_vbuf_memory (Total amount of memaory in bytes used for VBUFs) 3,313,056

mv2_ud_vbuf allocated (Number of UD VBUFs allocated) 0
mvZ_ud_vbuf available (Number of UD VBUFs available) 0
mv2_ud_vbuf freed (Number of UD VBUFs freed) 0
mvZ_ud_vbuf inuse (Number of UD VBUFs inuse) 0
mvZ_ud_vbuf_max_use (Maximum number of UD VBUFs used) 0
mvZ2_vbuf allocated (Number of VBUFs allocated) 320
mvZ_vbuf available (Number of VBUFs available) 255
mv2_vbuf_freed (Number of VBUFs freed) 25,545
mvZ_vbuf inuse (Number of VBUFs inuse) 65
mv2_vbuf_max_use (Maximum number of VBUFs used) 65
num_calloc_calls (Number of MPIT calloc calls) 89
num_free_calls (Number of MPIT_free calls) 47,801
num_malloc_calls (Number of MPIT_malloc calls) 49,258
num_memalign_calls (Number of MPIT_memalign calls) 34
num_memalign_free_calls (Number of MPIT_memalign_free calls) 0

Courtesy: The TAU Team

Network Based Computing Laboratory MUG’19

MinValue
3,313,056

= o o O

0

320
255
25,545
65

65

89
47,801
49,258
34

0

MeanValue
3,313,056

=0 0 D O

0

320
255
25,545
65

65

89
47,801
49,258
34

0

Std. Dev.

o o O O o o0 2D o0 90 900000 09D

NumSamples

L= N N e e el B T = e Y = (e B = [

Total
3,313,056

oo o o o

320
255
25,545
65

65

89
47,801
49,258
34

0

VBUF Memory Usage Without and With CVAR

Without CVAR With CVAR
Al .'.='..I...":i..-..:... I Ldarauit. 1| K.PDK W NaoW 0 nz.k I P
Name: mv2_total_vbuf_memory (Total amount of memory in bytes used for VBUFs) Name: mv2_total_vbuf_memory (Total amount of memory in bytes used for
Value Type: Max Value VBUFs)
Value Type: Max Value
0_| sStd. Dev. 1giso056 [] nodeO
33130586 Mean 1805992 node 128
3313056 node 0 i8os5992 [| node 256
3313056 — I'ID'dE 1 1805992 = node 384
3313056 |] node 2 igos99z [| node 512
1805992) node 640
ggi;ggg 1 | :g::i 1805992 ; node 768
18os5992 [| node 896
3313056] node5 1797007664 b0 1 Mean
3313056 (O] nodes6 17e6928 [] nodel
33130%¢ 0L | node 7 796928 [0] node 2
3313056 node 8 17eeo28 [] node3
3313056 [1 node9 i7gegz2s [] node 4
3313056 node 10 1 User Event Window
3313056 [0 =] nodell |
v Name: mem_allocated (Current level of allocated memory within the MPI
I p) library)

I . Value Type: Max Value
Name: mem_allocated (Current level of allocated memory within the MPI library)

Value Type: Max Value 737918.783 [=] Std. Dev.

859958266 O] Mean

143781.312 [] Std. Dev. 99342 [| node O
1
9169957.312 |] Mean e oiies | node
9316731 | | node 0 7626815 b] node 3
9142635 | nodel 7aolles B] node 4
9142635 [] node2 7801167] node 5
9142635 [0000000000000] node 3 gl40867 | node6
9142635 | | node 4 gzza223] node 7
9142635 | | node 5 8498571] node 8
9142635 node 6 o _
araco3s node & % export TAU_TRACK_MPI_T_PVARS=1
9142635 L] node8 % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE

9142635 | | node 9

% export TAU_MPI_T_CVAR_VALUES=16

:The TAU T
Courtesy: The TAU Team % mpirun -np 1024 tau_exec -T mvapich2 .[a.out

Network Based Computing Laboratory

MVAPICH2-Azure 2.3.2

e Released on 08/16/2019
e Major Features and Enhancements
— Based on MVAPICH2-2.3.2
— Enhanced tuning for point-to-point and collective operations
— Targeted for Azure HB & HC virtual machine instances
— Flexibility for 'one-click' deployment

— Tested with Azure HB & HC VM instances

Network Based Computing Laboratory MUG’19

Performance of Radix

Total Execution Time on HC (Lower is better) Total Execution Time on HB (Lower is better)

T 5 W MVAPICHZ™X 5 T Lo | MMVAPICH2-X m HPCX I
2 B HPCx 3x faster g
9]
v
& 20 % 15
)]
£ 15 E
'; e 10
.g 10 _§
3 2 5
g 5 X
Ll
0 0 4
16(1x16) 32(1x32) 44(1X44) 88(2X44) 176(4X44) 352(8x44) 60(1X60) 120(2X60) 240(4X60)
Number of Processes (Nodes X PPN) Number of Processes (Nodes X PPN)

Network Based Computing Laboratory MUG’19

Performance of FDS (HC)

Single Node
Total Execution Time (Lower is better)

[EEN
o

Execution Time (Seconds)
O L N WA Ul 0O

16(1x16)

32(1x32) 44(1X44)

Processes (Nodes X PPN)

Network Based Computing Laboratory

600

500

400

300

200

100

Execution Time (Seconds)

Multi-Node

Total Execution Time (Lower is better)

1

e

|8 MVAPICH2-X 8 HPCx

88(2X44)

Processes (Nodes X PPN)

Jd6 J5

176(4X44)

Part of input parameter: MESH 1JK=5,5,5, XB=-1.0,0.0,-1.0,0.0,0.0,1.0, MULT_ID="mesh array’

MUG’19

MVAPICH2 Software Family

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), MVAPICH2-X
OSU INAM (InfiniBand Network Monitoring and Analysis),

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric | MVAPICH2-X-AWS

Adapter (EFA)

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning | MVAPICH2-GDR
Applications

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, MVAPICH2-EA
RoCE (v1/v2)

MPI Energy Monitoring Tool OEMT
InfiniBand Network Analysis and Monitoring OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance OMB

Network Based Computing Laboratory

MVAPICH2-X for MPI and Hybrid MPI + PGAS Applications

High Performance Parallel Programming Models

MPI PGAS Hybrid --- MPI + X
Message Passing Interface (UPC, OpenSHMEM, CAF, UPC++) (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Unified Communication Runtime

Diverse APIs and Mechanisms
Collectives | .
Optimized Point- Remote Memory . Algorithms cealablel ok Eanilt ntros..pec.tlon
) o Active Messages) Analysis with OSU
to-point Primitives Access (Blocking and Startup Tolerance INAM
Non-Blocking)
Support for Modern Networking Technologies Support for Modern Multi-/Many-core Architectures
(InfiniBand, iWARP, RoCE, Omni-Path...) (Intel-Xeon, OpenPower...)

e Current Model — Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI

— Possible deadlock if both runtimes are not progressed

- Consumes more network resource

e Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF
— Available with since 2012 (starting with MVAPICH2-X 1.9)

— http://mvapich.cse.ohio-state.edu

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

MVAPICH2-X 2.3rc2

e Released on 03/01/2019

e Major Features and Enhancements

— MPI Features

— Based on MVAPICH2 2.3.1

OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

— MPI (Advanced) Features

Improved performance of large message communication

Support for advanced co-operative (COOP) rendezvous protocols in SMP

channel
— OFA-IB-CH3 and OFA-IB-RoCE interfaces

Support for RGET, RPUT, and COOP protocols for CMA and XPMEM
— OFA-IB-CH3 and OFA-IB-RoCE interfaces

Support for load balanced and dynamic rendezvous protocol selection
— OFA-IB-CH3 and OFA-IB-RoCE interfaces

Support for XPMEM-based MPI collective operations (Broadcast, Gather,
Scatter, Allgather)

— OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

Extend support for XPMEM-based MPI collective operations (Reduce and
All-Reduce for PSM-CH3 and PSM2-CH3 interfaces

e Improved connection establishment for DC transport
— OFA-IB-CH3 interface
e Add improved Alltoallv algorithm for small messages

e OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

OpenSHMEM Features

e Support for XPMEM-based collective operations (Broadcast, Collect,

Reduce_all, Reduce, Scatter, Gather)

UPC Features

e Support for XPMEM-based collective operations (Broadcast, Collect,
Scatter, Gather)

UPC++ Features

e Support for XPMEM-based collective operations (Broadcast, Collect,
Scatter, Gather)

Unified Runtime Features

e Based on MVAPICH2 2.3.1 (OFA-IB-CH3 interface). All the runtime
features enabled by default in OFA-IB-CH3 and OFA-IB-RoCE interface
of MVAPICH2 2.3.1 are available in MVAPICH2-X 2.3rc2

Network Based Computing Laboratory MUG’19

MVAPICH2-X Feature Table

Architecture Specific Point-to-point and Collective Optimizations
for x86, OpenPOWER, and ARM

Optimized Support for PGAS models
(UPC, UPC++, OpenSHMEM, CAF) and Hybrid
MPI+PGAS models

CMA-Aware Collectives

Optimized Asynchronous Progress™

InfiniBand Hardware Multicast-based MPI_Bcast**

OSU InfiniBand Network Analysis and Monitoring (INAM)**

XPMEM-based Point-to-Point and Collectives

ANANAVER SREN
ANEANANANER AN

SN KKKS S

Direct Connected (DC) Transport Protocol**

User mode Memory Registration (UMR)**

On Demand Paging (ODP)**

Core-direct based Collective Offload**

CSKKRKKKKKRK] €S

SHARP-based Collective Offload**

* *indicates disabled by default at runtime. Must use appropriate environment variable in MVAPICH2-X user guide to enable it.
* *indicates features only tested with InfiniBand network

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-X Features

e Direct Connect (DC) Transport
- Available from MVAPICH2-X 2.3rc1 onwards

e Understanding Basic Intra-node Communication Mechanisms
— POSIX SHMEM vs. CMA vs. XPMEM

e CMA-based Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e Asynchronous Progress
— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Reduction Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Minimizing Memory Footprint by Direct Connect (DC) Transport

e Constant connection cost (One QP for any peer)
e Full Feature Set (RDMA, Atomics etc)
e Separate objects for send (DC Initiator) and receive (DC
Target)
— DC Target identified by “DCT Number”
— Messages routed with (DCT Number, LID)

— Requires same “DC Key” to enable communication
e Available since MVAPICH2-X 2.2a

Memory Footprint for Alltoall NAMD - Apoal: Large data set
1.2

o]
e WRC WDC-Pool EWUD MXRC £ mRC W DC-Pool mUD B XRC
g‘ 100 s

= 0.8 ~
“E’
2 ¢ 0.6 -
6 10 A a
2 T 04 -
] Q
g S
c (5] .
< £ 0.2
o 1 4 5

S i

80 160 320 640 160 320 620
Number of Processes Number of Processes

H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty and D. K. Panda, Designing MPI Library with Dynamic Connected Transport (DCT)
of InfiniBand : Early Experiences. IEEE International Supercomputing Conference (ISC '14)

Network Based Computing Laboratory MUG’19

Impact of DC Transport Protocol on Neuron

Neuron with YuEtAl2012 e Up to 76% benefits over MVAPICH?2 for
Neuron using Direct Connected transport
MVAPICH2 [MVAPICH2-X protocol at scale
1600 — VERSION 7.6.2 master (f5a1284) 2018-08-15
“ 1400 76%
o S~ e Numbers taken on bbpv2.epfl.ch
£ 1200 !
= 1000 10% — Knights Landing nodes with 64 ppn
77N
.S Q 39% — ./x86_64/special -mpi -c stop_time=2000 -c is_split=1
5 800 = / -
o parinit.hoc
o 600 e -
3 — Used “runtime” reported by execution to measure

400 performance
200 . .
ﬂ e Environment variables used

— MV2_USE_DC=1

— MV2_NUM_DC_TGT=64

— MV2_SMALL MSG_DC_POOL=96
— MV2_LARGE_MSG_DC_POOL=96
— MV2_USE_RDMA_CM=0

512 1024 2048 4096
No. of Processes

Overhead of RC protocol for

connection establishment and
commuhnication Available from MVAPICH2-X 2.3rc2 onwards

Network Based Computing Laboratory

Overview of MVAPICH2-X Features

e Understanding Basic Intra-node Communication Mechanisms
— POSIX SHMEM vs. CMA vs. XPMEM
e CMA-based Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e Asynchronous Progress
— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Reduction Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Existing Intra-Node Communication Mechanism in MPI

Shared MMAP Kernel
Region address-space

MPI Sender ____”]?E____,%

pages %
o
MPI Receiver 202°

MPI Sender

MPI Receiver

Shared Memory — SHMEM Kernel-Assisted Copy
Requires two copies System call overhead
No system call overhead Requires single(a.k.a “zero”) copy
Better for Small Messages Better for Large Messages

(CMA, KNEM, LiMIC)

Network Based Computing Laboratory

Shared Address-space based Communication

« XPMEM (https://github.com/hjelmn/xpmem) --- “Cross-partition Memory”
— Mechanisms for a process to “attach” to the virtual memory segment of a remote process

— Consists of a user-space API and a kernel module
 The sender process calls “xpmem_make ()" to create a shared segment
— Segment information is then shared with the receiver
 The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

 The receliver process can directly read/write on the remote process’ memory

, . Sender’s Receiver’s
Sender’s Receiver's Address-space Address Space
Address-space Address Space
T - ' Direct LD/ST .
N
e sh xpmem_get() > | T N\
xpmem_make () o Sf‘e‘;ssg;i‘i xpmem_attachQ) | R \
segment N\

Network Based Computing Laboratory

https://github.com/hjelmn/xpmem

MPI Level Point-to-Point Latency

Intra—-socket MPI Latency

Inter—-socket MPI Latency

1000 F T T T T T 1000 F T T T T]

i MVAPICHZ2-2 . 3-SHMEM i MVAPTICH2-2 . 3-SHMEM :

! MVAPICH2-2.3-CMA ----K--- ! MVAPTCH2-2 . 3—CMA ----%--- %

. | MVAPTICHZ2X-2.3rcl-XPMEM . | MVAPICH2X-2.3rcl-XPMEM j

0 o w0 o

g 100} g {1 § 100} o 3

(8] i]] i]
O U
@ D
o 4]
0 o
.|]

- 10 F 1 3 10 E £

E i 1 E i :
- By
8] 8]
o 3

+ 1 1 » 1 E

@ ©]
— —

D-l 1 1 [1 1 D-l | 1 [| 1
4K 16K 64K 256K 1M 4M 4K 16K 64K 256K 1M aM
Message Size (Bytes) Message Size (Bytes)

e |ntel Xeon CPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

e Used osu_latency from OSU Microbenchmarks v5.5

Network Based Computing Laboratory

MPI Level Intra-socket Point-to-Point Bandwidth

MPI Bandwidth MPTI Bidirectional andwidth
T T 40000 T

25000 T

I | | | I 1

MVAPICHZ-2 .3—SHMEM
MVAPICHZ-2 .3—CMA --=-K-=-

35000 | MVAPICHZ2-2.3-LiMIC2 - I]

MVAPICHZX-2.3rcl-XPMEM

30000 | 1

! ! I | I I

MVAPICHZ-Z.3—-SHMEM
MVAPICHZ-2,3—-CMA ----%---
MVAPTICHZ2-2.3-LiMIC2Z - A

20000 FMVAPICHZX-2.3rcl-XPMEM]

B J;‘.:‘ R - .
15000 | e, - 25000 y: L N

5000 F 1
'

X
20000 F f .
15000 F ;]

5000 | " -

Bandwidth (Million Bytes/s)
g
Bandwidth (Million Bytes/s)

]
o . P] 1 1 ! ! !

1 Beeeen

2 4 8 16 6d 256 1K 4K 16K 64K Z56K 1M 2 4 8 16 6d 256 1K 4K 16K 64K Z56K 1M

Message Size (Bytes) Message Size (Bytes)

e |ntel Xeon CPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

e Used osu_bw and osu_bibw from OSU Microbenchmarks v5.5

Network Based Computing Laboratory

MPI Level Inter-Socket Point-to-Point Bandwidth

MPI Bandwidth MPI Bidirectional Bandwidth
EDOOO] I | | | I] 1 | k I 4.[][][][] 1 | | | | I 1] I | I
MVAPICHZ2-2 . 3-SHMEM MVAPICH2-2 . 3-SHMEM
= 18000 MVAPTCHZ-2 .3-CMA ----%--- 1 % 35000 | MVAPICHZ-2 .3-CMA ----%--- 1
~ MVAPICH2-2 . 3-LiMIC2 - _JIIE — MVAPICH2-2.3-LiMIC2 - SR
¢ 16000 [MVAPICH2X-2.3rcl-XPMEM 1 o MVAPICH2X-2.3rcl-XPMEM
2 o £ 30000 | -
o 14000 F-2aaN &
c .)'.'_1' ;‘M’ c 25000 F “,.f*,,“ _|
- .o * ",
S 12000 ¥ 3 0 SN
— H — K
— 10000 F H 4 20000 F f‘ -
- ; -
= { = i
A ! 1 ~ 1s000} ! -
£ [£ j
5 6000 | /-'—'L«—/*\\F 3 i
- - 10000 F h
Z 4000 } e {1 3 /
o f- o i -"’r‘*&—*‘—ﬂhd—ﬂ___.
g 2000} .«-’”'/ | 8 5000 //ﬁ_,____._
0 . . : --""-i"'—-] 1 1 | |] 0 * & : s gl] 1 1]]]
Z 4 8B 16 64 286 1K 4K 16K 64K 256K 1M Z 4 8 16 G4 256 1K 4K 16K 64K Z2E6K 1M
Message Size (Bytes) Message Size (Bytes)

e |Intel XeonCPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

e Used osu_bw and osu_bibw from OSU Microbenchmarks v5.5

Network Based Computing Laboratory

Cooperative Rendezvous Protocols

Graph500 CoMD MiniGhost
1500 500 100
1300 B MVAPICH2 :.Jg(y B MVAPICH2 _ B MVAPICH2
B Open MPI 0 - 400 E 80 2
5 1100 p o W Open MPI 16% 5 W Open MPI 10%
€ 900 S g
§ 0 @ Proposed § 300 @ Proposed s 60 H Proposed
(%2 2 £
3 2 £
@ 500 g 200 E 40
= 300 " 100 20
o | I 0 |
-100 0
28 56 112 224 448 896 1536 28 56 112 224 448 896 1536 28 56 112 224 448 896 1536

Number of Processes Number of Processes Number of Processes

e Use both sender and receiver CPUs to progress communication concurrently

e Dynamically select rendezvous protocol based on communication primitives and sender/receiver
availability (load balancing)

e Upto2x improvement in large message latency and bandwidth

e Upto 19% improvement for Graph500 at 1536 processes
Platform: 2x14 core Broadwell 2680 (2.4 GHz)

Cooperative Rendezvous Protocols for Improved Performance and Overlap Mellanox EDR ConnectX-5 (100 GBps)
S. Chakraborty, M. Bayatpour,, J Hashmi, H. Subramoni, and DK Panda, Baseline: MVAPICH2X-2.3rc1, Open MPIv3.1.0
SC ‘18 (Best Student Paper Award Finalist) Available in MVAPICH2-X 2.3rc2

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-X Features

¢ CMA-based Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e Asynchronous Progress
— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Reduction Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Optimized CMA-based Collectives for Large Messages

1000000 1000000 1000000
100000 100000 100000 >
2 10000 10000 3.2x 10000 ~4x
; r Better Better
= 1000 1000
S 1000 ——MVAPICH2-2.3a
= e VVAPICH2-2.33 N e VMVAPICH2-2.33
38 100 Intel MPI 2017 100 100 17x
Intel MPI 2017 Better Intel MPI 2017
OpenMPI 2.1.0
10 pen 10 OpenMPI 2.1.0 10 OpenMPI 2.1.0
=@==Tuned CMA
=@==Tuned CMA =@==Tuned CMA
1 1 1
SXEEBIIEESz3s s AT G T S Y ST O g S
- N un
Message Size Message Size

Message Size

Performance of MPI_Gather on KNL nodes (64PPN)

e Significant improvement over existing implementation for Scatter/Gather with
1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)

* New two-level algorithms for better scalability
 Improved performance for other collectives (Bcast, Allgather, and Alltoall)

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI . .
Collectives for Multi/Many-core Systems, IEEE Cluster 17, BEST Paper Finalist Available since MVAPICH2-X 2.3b

79

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-X Features

e Asynchronous Progress
— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Reduction Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Benefits of the New Asynchronous Progress Design: Broadwell +

InfiniBand
P3DFFT High Performance Linpack (HPL)

9 = . 30000 - -
e, 2% Lower is better " Higher is better 29%
5 : 8 25000
(8] o | .
E 6 & 50000 Memory Consumption = 69%
i c
§-451 20% 8 15000 12%
-— <
- 33% P
Q3 € 10000
2 2 ! 5 8%
.Ig 1 I g_h-' 5000

0

112 224 448 ’ 224 448 896
Number of Processes PPN=28 Number of Processes PPN=28
B MVAPICH2 Async m MVAPICH2 Default m IMPI 2019 Default m IMPI 2019 Async B MVAPICH2 Async MVAPICH2 Default IMPI 2019 Default

Up to 33% performance improvement in P3DFFT application with 448 processes
Up to 29% performance improvement in HPL application with 896 processes

A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and D.K. Panda,
“Efficient design for MPI Asynchronous Progress without Dedicated Resources”, Parallel Computing 2019

Available since MVAPICH2-X 2.3rcl

81

Network Based Computing Laboratory

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

Overview of MVAPICH2-X Features

e XPMEM-based Reduction Collectives

— Available from MVAPICH2-X 2.3rc1 onwards

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

OSU_Alireduce (Broadwell 256 procs) OSU_Reduce (Broadwell 256 procs)
- ®- MVAPICH2-2.3b 100000 - - MVAPICH2-2.3b
100000 1.8X 4X
IMPI-2017v1.132 IMP|-2017v1.132
10000 —¥=MVAPICH2-X-2.3rc1 [\ 1000 —X—MVAPICH2-2.3rc1 LA
o= v o
) o> 1000 .,/ x/x-
3 1000 —TX -
- / -
> 73.2 P e
g == 10037 -2 o
g 10 e e s G T
10 N~ 10 \ /
36.1 %
1 1
16k 32K 64k 128K 256K 512k 1M 2M 4M 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size Message Size

e “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

e Offloaded computation/communication to peers ranks in reduction collective operation

e Up to4X improvement for 4AMB Reduce and up to 1.8X improvement for 4M AllReduce

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Available since MVAPICH2-X 2.3rcl
Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Network Based Computing Laboratory MUG’19 83

Reduction Collectives on IBM OpenPOWER

4000
200 —@— MVAPICH2-2.3rc1 3.7X =—@&— MVAPICH2-2.3rcl
»
. SpectrumMPI-10.1.0 / 2000 SpectrumMPI-10.1.0 3 2X
)
-] =@ OpenMPI-3.0.0 7 =@ OpenMPI-3.0.0 "y -
MPI_Allreduce X ,’)’
_ 2 100 —e— MVAPICH2-XPMEM o o 2000 —e— MVAPICH2-XPMEM o” 7
c - -
3 «--"% ¢-”
o - = 1000
—l | 4 - - =l = ’4./.
% F
0 0
4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
800 e— MVAPICH2-2.3rcl 40000
= ‘ ,SX —e— MVAPICH2-2.3rcl
SpectrumMPI-10.1.0
S 600 pectrim / 20000 SpectrumMPI-10.1.0 o3X
> =@ OpenMPI-3.0.0 / y
(&) =@ OpenMPI|-3.0.0 P
c —e— MVAPICH2-XPMEM /
MPI_RedUCe o) 400 / 20000 =@ \IVAPICH2-XPMEM L4
< 2 o
200 -7 10000 P “o
P
- - = e 3 3 i
0 == - v 0 ———

4K 8K 16K 32K 64K 128K 256K

e Two POWERS8 dual-socket nodes each with 20 ppn
e Upto 2X improvement for Allreduce and 3X improvement for Reduce at 4MB message

e Used osu_reduce and osu_allreduce from OSU Microbenchmarks v5.5

512K

1M 2M aM 8M 16M

MUG’19

Network Based Computing Laboratory

Application Level Benefits of XPMEM-based Designs

CNTK AlexNet Training
(B.S=default, iteration=50, ppn=28)

MiniAMR (dual-socket, ppn=16)

Execution Time (s)

Intel MPI
0 MVAPICH2
B MVAPICH2-XPMEM
—20%

800
700
600
500
400
300
200
100

0

28 56
No. of Processes

112

9%

SN

224

Execution Time (s)

70
60
50
40
30
20
10

Intel MPI
0 MVAPICH2
B MVAPICH2-XPMEM

27%

16 32 64
No. of Processes

128

256

%

Intel XeonCPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

Up to 20% benefits over IMPI for CNTK DNN training using AllIReduce
Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for MiniAMR application kernel

Network Based Computing Laboratory

MUG’19

Impact of XPMEM-based Designs on MiniAMR

60 .
B MVAPICH-2.3rc1 42%

MVAPICH2-XPMEM 36%
41%
0 45% l
) Il +
0
10 20

No. of Processes

Execution Time (s)

OpenPOWER (weak-scaling, 3 nodes, ppn=20)

Network Based Computing Laboratory

Two POWERS dual-socket nodes
each with 20 ppn

MiniAMR application execution time
comparing MVAPICH2-2.3rcl and
optimized All-Reduce design

— MiniAMR application for weak-
scaling workload on up to three
POWERS nodes.

— Up to 45% improvement over
MVAPICHZ2-2.3rcl in mesh-
refinement time

Overview of MVAPICH2-X Features

e XPMEM-based Non-reduction Collectives

— Available from MVAPICH2-X 2.3rc2 onwards

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Performance of Non-Reduction Collectives with XPMEM

Broadcast
10000 100000 Gather
—@- Intel MPI 2018 » —e- Intel MPI 2018
OpenMPI 3.0.1 7,9 o 0.1
1000 —® MV2X-2.3rcl (CMA Coll) X 10000 penMPI 3.0.
. —@—MV2X-2.3rc2 (XPMEM Coll) V -0~ MV2X-2.3rc1 (CMA Coll)
3 X over o —e—MV2X-2.3rc2 (XPMEM Coll)
= S 1000 z
OpenMPI — . A
§ 100 F o o Ol 3X over
c 2
3 S 100 ~8” OpenMPI
8 s
—
10
10
o
1 1
TS S H¥TELEIARSE S %5 838 g YIRS
i N LN i @\l LN
Message Size (Bytes) Message Size (Bytes)

e 28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

e Used osu_bcast from OSU Microbenchmarks v5.5

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-X Features

e XPMEM-based MPI Derived Datatype Designs

— Will be available in future MVAPICH2-X releases

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Efficient Zero-copy MPI Datatypes for Emerging Architectures

= s
/
100 mMVAPICH2X-2.3 5X \\ B MVAPI|CH2X-2 3 ®MVAPICH2X-2.3 =

= IMPI 2018 1000 ’19)(\ ¢ \

2 IMPI 2019 = IMPI 2018 = IMPI 2018 , 3X
m
g m MVAPICH2X-Opt B MVAPICH2X-Opt | B MVAPICH2X-Opt
Q 10
0
E l l i
>
e 1
& 0.01
- 9 o o

>
= o5V’ o5V’ o5V’ QQ v ﬂ“ :
S SN \‘ﬁ’" d"" o & : ‘
8) 01 N ® © r\q‘/bﬂ r\(ﬂ)\ ™
— 2 4 8
No. of Processes Grid Dimensions (x, v, z, t) Grid Dimensions (X, Y, z, t)
3D-Stencil Datatype Kernel on MILC Datatype Kernel on KNL 7250 NAS-MG Datatype Kernel on
Broadwell (2x14 core) in Flat-Quadrant Mode (64-core) OpenPOWER (20-core)

e New designs for efficient zero-copy based MPI derived datatype processing

e Efficient schemes mitigate datatype translation, packing, and exchange overheads
e Demonstrated benefits over prevalent MPI libraries for various application kernels
e To be available in the upcoming MVAPICH2-X release

Network Based Computing Laboratory

Overview of MVAPICH2-X Features

e Optimized Collective Communication and Advanced Transport Protocols
— Available from MVAPICH2-X 2.3rc2 onwards

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

Impact of Optimized Small Message MPI_Alltoallv Algorithm

e Optimized designs in MVAPICH2-X offer significantly improved performance for small message

MPI_Alltoallv
—e—MVAPICH2-X HPE-MPI
100000
10000 \v—%
~5X better

% 1000
=
)
C
3

8 100

10

1

1 2 4 8 16 32 64 128 256

Message Size (Bytes)

Courtesy: Pramod Shivaji Kumbhar@EPFL

Up to 5X benefits over HPE-MPI using
optimized using optimized Alltoallv
algorithm and Direct Connected transport
protocol

Numbers taken on bbpv2.epfl.ch

— 96 KNL nodes with 64 ppn (6,144 processes)
— osu_alltoallv from OSU Micro Benchmarks

Environment variables used
— MV2_USE_DC=1

— MV2_NUM_DC_TGT=64

— MV2_SMALL_MSG_DC_POOL=96
— MV2_LARGE_MSG_DC_POOL=96
— MV2_USE_RDMA_CM=0

Available from MVAPICH2-X 2.3rc2 onwards

Network Based Computing Laboratory

Performance of CNTK with MVAPICH2-X on CPU-based Deep Learning

CNTK AlexNet Training

e CPU-based training of AlexNet neural (B.S=default, iteration=50, ppn=28)
network using ImageNet ILSVRC2012 |
Intel MPI
dataset . 800 o mvapich2 9%
_ = 700 @ MVAPICH2-XPMEM)
e Advanced XPMEM-based designs show up E 600 —20%
: - 00
to 20% benefits over Intel MPI (IMPI) for s ZOO
CNTK DNN training using All_Reduce g 300
200
e The proposed designs show good 100
scalability with increasing system size 0
28 56 112 224
No. of Processes

Available since MVAPICH2-X 2.3rcl release

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, J. Hashmi, S. Chakraborty, M. Bayatpour, H.
Subramoni, and DK Panda, 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018

Network Based Computing Laboratory MUG’19

Performance of TensorFlow with MVAPICH2-X on CPU

e CPU-based distributed TensorFlow

Benchmarks (TF) benchmark 600 | | |

— tf_cnn_benchmark tests '8 500 - I gﬁ%g%ﬁgﬁz 35cy
e AlexNet model training S 400 0

— ImageNet ILSVRC2012 dataset E 300
e Advanced SALaR and XPMEM based § 200

designs in MVAPICH-X showed good 7 100

scalability 0 112 224 448 896

e Upto 15% and 35% improvements in Number of Processes

number of images per second at 448 and TensorFlow Images per Second

(higher is better)
Will be available in future MVAPICH2-X releases

SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives, M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, P.
Kousha, and DK Panda IEEE Cluster 2018, Sep 2018 [Best Paper in Architecture Track]

896 processes, respectively.

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-X Features

e PGAS and Hybrid MPI+PGAS Support

— Available from MVAPICH2-X 2.1.9 onwards

Network Based Computing Laboratory

UPC++ Support in MVAPICH2-X

|
40000 14x .
+ ++ icati
25000 GASNet MPI - MPI + {UPC++} Application | | | MPI + {UPC++} Application
20000 ~m=-GASNET_IBV l’ l [l l
k= MV/2-X UPC++ i | UPC++ MPI
@ 25000 Runtime MP! Runtime I Interface Interfaces
o 1 T | 1 1
= 15000 I
GASNet Interfaces MVAPICH2-X
10000 [Unified Communication
5000 l I Runtime (UCR)
-. .
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M l I l’
Message Size (bytes) Network

Inter-node Broadcast (64 nodes 1:ppn)

e Full and native support for hybrid MPI + UPC++ applications

e Better performance compared to IBV and MPI conduits More Details in Student Poster
e OSU Micro-benchmarks (OMB) support for UPC++

e Available since MVAPICH2-X (2.2rc1)

Presentation

Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort

Graph500 Execution Time Sort Execution Time
3000
35 .
® MPI-Simple = MPI i Hybrid
30 2500
= MPI-CSC ~
2 S 2000
< 20 m_MPI-CSR 5
(]
E 15 - $ 1500
- ()
10 £ 1000
|—
5 500 -
4K 8K 16K 0 -
500GB-512 1TB-1K 2TB-2K 4TB-4K
No. of Processes Input Data - No. of Processes

* Performance of Hybrid (MPl+ OpenSHMEM) Graph500 Design e Performance of Hybrid (MPI+OpenSHMEM) Sort

e 8,192 processes Application
- 2.4X improvement over MPI-CSR ° 4,096 processes, 4 TB Input Size
- 7.6X improvement over MPI-Simple - MPI — 2408 sec: 0.16 TB/min

* 16,384 processes - Hybrid — 1172 sec; 0.36 TB/min

- 1.5X improvement over MPI-CSR

Eqos i
- 13X improvement over MPI-Simple >1% improvement over MPI-design

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned

Global Address Space Programming Models (PGAS '13), October 2013.
J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,

International Supercomputing Conference (ISC’13), June 2013
J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation,
Int'l Conference on Parallel Processing (ICPP '12), September 2012

Network Based Computing Laboratory MUG’19

MVAPICH2-X-AWS 2.3

e Released on 08/12/2019
e Major Features and Enhancements
— Based on MVAPICH2-X 2.3
— New design based on Amazon EFA adapter's Scalable Reliable Datagram (SRD) transport protocol
— Support for XPMEM based intra-node communication for point-to-point and collectives
— Enhanced tuning for point-to-point and collective operations
— Targeted for AWS instances with Amazon Linux 2 AMI and EFA support

— Tested with c5n.18xlarge instance

Network Based Computing Laboratory MUG’19

Evolution of networking on AWS

.CSn: EFA

C5: ENA 100 Gbps
_ .. 25 Gbps
‘c4. EBS optimized ~15 us

~50 us latency

latency
C3: ~100us latency

‘CCl:

10 Gbps

1 Gbps

Deep Dive on OpenMPI and Elastic Fabric Adapter (EFA) - AWS Online Tech Talks, Linda Hedges

Network Based Computing Laboratory MUG’19

Amazon Elastic Fabric Adapter (EFA)

e Enhanced version of Elastic Network Adapter (ENA)
e Allows OS bypass, up to 100 Gbps bandwidth

e Network aware multi-path routing

e Exposed through libibverbs and libfabric interfaces

e |Introduces new Queue-Pair (QP) type
— Scalable Reliable Datagram (SRD)
— Also supports Unreliable Datagram (UD)
— No support for Reliable Connected (RC)

Network Based Computing Laboratory

IB Transport Types and Associated Trade-offs

: : : Scalable | Unreliable :
. Reliable Reliable Dynamic . . Unreliable Raw
Attribute) Reliable | Connectio
Connection | Datagram | Connected Datagram | Datagram
Datagram n
Scala bility M2N QPs M QPs M QPs M QPs M2N QPs M QPs 1QP
(M processes, N nodes) per HCA per HCA per HCA per HCA per HCA per HCA per HCA
Corrupt data Yes
detected
Data Delivery < Data delivered exactly once > No guarantees
Guarantee
One source to Unordered
> ’
= Data Order Per connection multiple Per connection No duplicate data No No
= Guarantees o
Ko destinations detected
©
- Data Loss
Q Y N N
o' Detected &> © ©
Errors (retransmissions, alternate path, etc.) handled by transport layer. Errors are
Error :
Client only involved in handling fatal errors (links broken, protection reported to None None
Recovery o
violation, etc.) responder

Network Based Computing Laboratory

Scalable Reliable Datagrams (SRD): Features & Limitations

e Similar to IB Reliable Datagram

Feature ubD SRD
— No limit on number of outstanding messages per
Send/Recv v v context
Send Immediate .
w/ ! X X e Out of order delivery
RDMA . :
Seral e i X X — No head-of-line blocking
Scatter Gather Lists v v — Bad fit for MPI, can suit other workloads
S % v e Packet spraying over multiple ECMP paths
Ordering X X — No hotspots
Inline Sends % % — Fast and transparent recovery from network
failures

Global Routing Header v X

_ e Congestion control designed for large scale
Max Message Size 4KB 8KB

— Minimize jitter and tail latency

Amazon Elastic Fabric Adapter: Anatomy, Capabilities, and the Road Ahead, Raghu Raja, OpenFabrics Workshop 2019

Network Based Computing Laboratory

Verbs level evaluation of EFA performance

. Unidirectional Message Rate
Ping-Pong Latency

25 2.5
2.02
'\._.MQ b
m g’o £ q == A
315 2 s 15 L.77
(7]
5 15.69 § 2 hV/
5 = E 1
E 10 -~
5 0.5
——UD =@ SRD —¢—UD == SRD
0 T T T T T T T T T T T 0 T T T T T T T T T T T
2 8 32 128 512 2048 2 8 32 128 512 2048

Message Size (Bytes
Message Size (Bytes) g (Bytes)

e SRD adds 8-10% overhead compared to UD
e Due to hardware based acks used for reliability

* Instance type: c5n.18xlarge
e CPU: Intel Xeon Platinum 8124M @ 3.00GHz

3.5

2.5 A

15

0.5

Bidirectional Message Rate

2.91
o—*—#—H—H—N_\
2.54 \

\

hNY

——UD —#—SRD

2 8 32 128 512 2048
Message Size (Bytes)

Network Based Computing Laboratory MUG’19

Point-to-Point Performance

25 2500 V2D = OpenMPl =] 0.8
MV2-SRD -x- 0.7
_. 20 —. 2000 : 2 06+
m) . 7 a Y
2451 = 1500 | g 05
g 9 = 04}
G 10| & 1000 | § 03|
I 5| MV2-UD —+ O - 500 | =0 -
—+ panMFl " 0.1 | MV2-UD =~ OpenMP| -»
o LMV2-SRD -x= 0 o LMV2:SRD -x-
1 4 16 64 256 1K 4I'GK 16K 64K 256K 1M 4M 1 4 16 64 256 1K 4K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) Small Message Latency (b) Large Message Latency (c) Unidirectional Message Rate

e Both UD and SRD shows similar latency for small messages
e SRD shows higher message rate due to lack of software reliability overhead

e SRD is faster for large messages due to larger MTU size

Network Based Computing Laboratory

Collective Performance: MPI Scatterv

10000 MV2-UD + OpenMP| = 10000 10000 FEEEEE T T .
MV2-SRD = BN M- M M- N M- NN K
Ty BF S RE OF PR o EY o R LXK R _— —
3 1000 o 3 1000 3 1000
<) %) %) .
3 3 - 5 | VIVEVENIVVIVEVINSE S
w 100 | ! < 100, — ik X S 100 f
— M — ~
T X x X 2 X X-x-X X MV2-UD + OpenMP| MV2-UD + OpenMP| =
10 T , , . . 10 MV2-SRD = . | 10 MV2-SRD = | |
1 4 16 64 256 1K 4K 1 4 16 64 256 1K 4K 1 4 16 64 256 1K 4K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) 2 Nodes, 72 Processes (b) 4 Nodes, 144 Processes (c) 8 Nodes, 288 Processes

e SRD shows up to 60% improvement over UD
e Non-roots do not need to send back explicit acknowledgments

e Root does not need to buffer messages until ack is received

Network Based Computing Laboratory

Collective Performance: MPI Gatherv

180 i 400 — — 800 . —
160 [SR = O ss0 [WFsHB . 700 [WIS = O
% 140+ & | % 300 | 7 600 e
2 120 7707 R S = 250 frow-omoon-w-non S50 TTEEEE
gxigglk”&xrx’u“xhx;“*—x‘f Q‘EUU ’ §4UU {’“
) 60 t o 150 % o %= o X -%X=% % % x-X B 300 L & o X e x ke -
g} g} o
— 40t — 100 ¢ — 200 ¢
20 r 50 100
0 ' : 0 : ' 0 : '
1 4 16 64 256 1K 4K 1 4 16 64 256 1K 4K 1 4 16 64 256 1K 4K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) 2 Nodes, 72 Processes (b) 4 Nodes, 144 Processes (c) 8 Nodes, 288 Processes

e Up to 33% improvement with SRD compared to UD
e Root does not need to send explicit acks to non-root processes

e Non-roots can exit as soon as the message is sent (no need to wait for acks)

Network Based Computing Laboratory

Collective Performance: MPI Allreduce

350 % 500 800
- MV2-UD — OpenMP| -x- MV2-UD — OpenMP| -
300 . . j{gg | MV2-SRD -x- i ”_ 700 | Mv2SRD o
g 250 |
> 200 |
]
S 150 |
T 100 f x- X =% x- e X= x 2 X
50 | MV2-UD - OpenMP| -* |
o LMV2SRD x- 0 | | | 0 | | |
4 16 64 256 1K 4K 4 16 64 256 1K 4K 4 16 64 256 1K 4K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) 2 Nodes, 72 Processes (b) 4 Nodes, 144 Processes (c) 8 Nodes, 288 Processes

e Up to 18% improvement with SRD compared to UD
e Bidirectional communication pattern allows piggybacking of acks

e Modest improvement compared to asymmetric communication patterns

Network Based Computing Laboratory

Application Performance

miniGhost 10% better CloverLeaf

[ole]
o

w
o

B MV2X M OpenMPI

o

B MV2X-UD B MV2X-SRD

w7 m
2 225
8 60 - g
[} Q
250 - & 20 27.5%
€ 40 £ 15 =
= S better
§ 30 1 § 10
£ 20 £
2 o 5
X 10 X
w Ll

0 - 0

72(2x36) 144(4x36) 288(8x36) 72(2x36) 144(4x36) 288(8x36)

Processes (Nodes X PPN) Processes (Nodes X PPN)

e Up to 10% performance improvement for MiniGhost on 8 nodes

e Up to 27% better performance with CloverLeaf on 8 nodes

Network Based Computing Laboratory

MVAPICH2 Software Family

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), MVAPICH2-X
OSU INAM (InfiniBand Network Monitoring and Analysis),

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric | MVAPICH2-X-AWS

Adapter (EFA)

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning | MVAPICH2-GDR
Applications

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, MVAPICH2-EA
RoCE (v1/v2)

MPI Energy Monitoring Tool OEMT
InfiniBand Network Analysis and Monitoring OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance OMB

Network Based Computing Laboratory

MPI + CUDA - Naive

e Data movement in applications with standard MPIl and CUDA interfaces

At Sender:

cudaMemcpy(s_hostbuf, s_devbuf, . . .);
MPI1_Send(s_hostbuf, size, . . .);

At Recelver:

MPI1_Recv(r_hostbuf, size, . . .);
cudaMemcpy(r_devbuf, r_hostbuf, . . .);

= =

High Productivity and Low Performance

Network Based Computing Laboratory

MPI + CUDA - Advanced

* Pipelining at user level with non-blocking MPI and CUDA interfaces

At Sender:
for (j = 0; J < pipeline_len; j++)
cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j *
blksz, ...);
for (j = 0; j < pipeline_len; j++) {
while (result = cudaSucess) {
result = cudaStreamQuery(...);
If(j > 0) MPI_Test(...);

}

MPI_lIsend(s_hostbuf + j * block_sz, blksz . . .);
¥
MPI1_Waitall();

<<Similar at receiver>>
Low Productivity and High Performance

Network Based Computing Laboratory MUG’19

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e QOverlaps data movement from GPU with RDMA transfers

At Sender: -

MPI1_Send(s_devbuf, size, ...); Inside
mvaricH2® &

1

1

] g
1

1

\

\

\

N
~

At Recelver:
MPI1_Recv(r_devbuf, size, ...);

High Performance and High Productivity

Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.2 Releases

e Support for MPlI communication from NV
e High performance RDMA-based inter-noc

DIA GPU device memory
e point-to-point

communication (GPU-GPU, GPU-Host anc

Host-GPU)

e High performance intra-node point-to-point communication for multi-
GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)

e Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node
communication for multiple GPU adapters/node

e Optimized and tuned collectives for GPU device buffers

e MPI datatype support for point-to-point and collective communication

from GPU device buffers
e Unified memory

Network Based Computing Laboratory

MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems

e MVAPICH2-GDR 2.3.2 requires the following software to be installed on your system:

1. Mellanox OFED 3.2 and later

2. NVIDIA Driver 367.48 or later

3. NVIDIA CUDA Toolkit 7.5 and later

4. NVIDIA Peer Memory (nv_peer _mem) module to enable GPUDirect RDMA (GDR) support

e Strongly Recommended for Best Performance
5. GDRCOPY Library by NVIDIA: https://github.com/NVIDIA/gdrcopy

e Comprehensive Instructions can be seen from the MVAPICH2-GDR User Guide:

— http://mvapich.cse.ohio-state.edu/userguide/gdr/

Network Based Computing Laboratory

http://www.mellanox.com/page/products_dyn?product_family=26
http://www.nvidia.com/Download/driverResults.aspx/69372/
https://developer.nvidia.com/cuda-toolkit
http://www.mellanox.com/page/products_dyn?product_family=116
https://github.com/NVIDIA/gdrcopy
http://mvapich.cse.ohio-state.edu/userguide/gdr/

MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems

e Simple Installation steps for both systems

e Pick the right MVAPICH2-GDR RPM from Downloads page:

— http://mvapich.cse.ohio-state.edu/downloads/

— e.g. http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-
mcast.cudal0.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86 64.rpm (== <mv2-gdr-rpm-name>.rpm)

S wget http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/<mv2-gdr-rpm-name>.rpm

Root Users:

S rpm -Uvh --nodeps <mv2-gdr-rpm-name>.rpm

Non-Root Users:

S rpm2cpio <mv2-gdr-rpm-name>.rpm | cpio — id
* Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/downloads/
http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm
mailto:mvapich-help@cse.ohio-state.edu

ROCE and Optimized Collectives Support

e RoCE V1 and V2 support
e RDMA_CM connection support

e CUDA-Aware Collective Tuning
— Point-point Tuning (available since MVAPICH2-GDR 2.0)

e Tuned thresholds for the different communication patterns and features
e Depending on the system configuration (CPU, HCA and GPU models)
— Tuning Framework for GPU based collectives
e Select the best algorithm depending on message size, system size and system configuration

e Support for Bcast and Gather operations for different GDR-enabled systems

e Available since MVAPICH2-GDR 2.2RC1 release

Network Based Computing Laboratory

MVAPICH2-GDR 2.3.2

e Released on 08/08/2019

e Major Features and Enhancements
— Based on MVAPICH2 2.3.1
— Support for CUDA 10.1
— Support for PGI 19.x
— Enhanced intra-node and inter-node point-to-point performance
— Enhanced MPI_Allreduce performance for DGX-2 system
— Enhanced GPU communication support in MPI_THREAD_MULTIPLE mode

— Enhanced performance of datatype support for GPU-resident data

e Zero-copy transfer when P2P access is available between GPUs through NVLink/PCle

— Enhanced GPU-based point-to-point and collective tuning

e OpenPOWER systems such as ORNL Summit and LLNL Sierra ABCI system @AIST, Owens and Pitzer systems @Ohio Supercomputer Center
— Scaled Allreduce to 24,576 Volta GPUs on Summit
— Enhanced intra-node and inter-node point-to-point performance for DGX-2 and IBM POWERS8 and IBM POWERY systems
— Enhanced Allreduce performance for DGX-2 and IBM POWER8/POWER9 systems
— Enhanced small message performance for CUDA-Aware MPI_Put and MPI_Get

— Flexible support for running TensorFlow (Horovod) jobs

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-GDR Features
e Support for Efficient Small Message Communication with GPUDirect RDMA
e Multi-stream Communication for IPC
e CMA- based Intra-node Host-to-Host Communication Support
e MPI Datatype Support
e Support for Managed Memory

e Optimized Support for Deep Learning

Network Based Computing Laboratory

Enhanced MPI Design with GPUDirect RDMA

Sender Receiver
. Current MPI design using GPUDirect RDMA uses ctart
Rendezvous protocol —
rndz_reply
. Has higher latency for small messages /
data

. Can eager protocol be supported to improve performance
for small messages? %

. Two schemes proposed and used Rendezvous Protocol

. Loopback (using network adapter to copy data) Sender Receiver
. Fastcopy/GDRCOPY (using CPU to copy data)
send
R. Shi, S. Potluri, K. Hamidouche M. Li, J. Perkins D. Rossetti and D. K. Panda, Designing Efficient
Small Message Transfer Mechanism for Inter-node MPI Communication on InfiniBand GPU
Clusters IEEE International Conference on High Performance Computing (HiPC'2014)
Eager Protocol

Network Based Computing Laboratory

Optimized MVAPICH2-GDR Design

GPU-GPU Inter-node Latency GPU-GPU Inter-node Bi-Bandwidth

30 6000

25 —_
— = 5000
3 20 Q
> 5 S 4000
Q]
E 10 £ 3000 11X
5 1.85us | 10x 2 2000

[
o & 3 1000
O 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K S wr ww W W z;.——-—.—‘—"—**‘
AR T T T - -G = T ST
Message Size (Bytes) oo !
Message Size (Bytes)
=#&=MV2-(NO-GDR) MV2-GDR 2.3 «fr=MV2-(NO-GDR) MV2-GDR-2.3

- GPU-GPU Inter-node Bandwidth
o 3500
2 3000
= 2500
% 2000 9x MVAPICH2-GDR-2.3
nr_‘g iggg Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU

500
0 &—ih—i—i .;4_——_—-—*—1—""" Mellanox Connect-X4 EDR HCA
1 2

) [
4 8 16 32 64 128256512 1K 2K 4K CUDA 9.0

Mellanox OFED 4.0 with GPU-Direct-RDMA
Message Size (Bytes)

«de=\V2-(NO-GDR) MV2-GDR-2.3

Network Based Computing Laboratory

Device-to-Device Performance on OpenPOWER (NVLink2 + Volta)

INTRA-NODE LATENCY (SMALL) INTRA-NODE LATENCY (LARGE)
INTRA-NODE BANDWIDTH
20
18 500 70
=—Intra-Socket 450 == |ntra-Socket
16 400 60
_ 14 Inter-Socket z 350 rerSocket T - e |ntra-Socket Inter-Socket
312 = 300 2
Z 10 g 250 © 40
s g 200 =
£ s R 3 150 g 30
6 100
4 50 —— € 20
2 0 ®
0 16K 32K 64K 128K 256K 512K 1M 2M 4M 10
1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K Message Size (Bytes) 0 -
Message Size (Bytes) 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Message Size (Bytes)
Intra-node Latency: 5.36 us (without GDRCopy) Intra-node Bandwidth: 70.4 GB/sec for 128MB
via NVLINK2
INTER-NODE LATENCY (SMALL) INTER-NODE LATENCY (LARGE) (INTEF{-NODE BANDWIDTH
12 350 30
10 300 25
— 250 g
El 2 = 20
Z 6 = 200)
J] e < 15
5 4 g 150 £
3 3 10
100 2
2 o
0 50 5
1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 0 0
Message Size (Bytes) 16K 32K 64K 128K 256K 512K 1M 2M 4AM 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
. M Size (Byt
Inter-node Latency: 5.66 us (without GDRCopy) : Message Size (Bytes) Message Size (Bytes)

Available since MVAPICH2-GDR 2.3a Inter-node Bandwidth: 23.7 GB/sec (2 port EDR)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

Network Based Computing Laboratory MUG’19 121

Tuning GDRCOPY Designs in MVAPICH2-GDR

D2H_GDRCOPY_LIMIT

which GDRCOPY is used at
sender

MV2_USE_GDRCOPY * Enable / Disable GDRCOPY- 1 * Always enable
based designs (Enabled)
MV2_GDRCOPY_LIMIT | Controls messages size until | 8 KByte | ® Tune for your system
which GDRCOPY is * GPU type, host architecture.
used Impacts the eager performance
MV2_GPUDIRECT _GDR | e Path to the GDRCOPY Unset | e Always set
COPY_LIB library
MV2_ USE_GPUDIRECT_ | * Controls messages size until | 16Bytes | ® Tune for your systems

* CPU and GPU type

e Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

e http://mvapich.cse.ohio-state.edu/userguide/gdr/# tuning and usage parameters

Network Based Computing Laboratory

Tuning Loopback Designs in MVAPICH2-GDR

MV2_USE_GPUDIRECT_ | ® Enable / Disable 1 * Always enable
LOOPBACK LOOPBACK-based designs (Enabled)
MV2_GPUDIRECT _LOO | Controls messages size until | 8 KByte | ® Tune for your system
PBACK_LIMIT which LOOPBACK is * GPU type, host architecture and
used HCA. Impacts the eager
performance
*Sensitive to the P2P issue

e Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

e http://mvapich.cse.ohio-state.edu/userguide/gdr/# tuning and usage parameters

Network Based Computing Laboratory MUG’19

Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR

MV2_ USE_GPUDIRECT | Enable / Disable GDR-based 1 * Always enable
designs (Enabled)

MV2_GPUDIRECT _LIMIT | e Controls messages size until | 8 KByte | ® Tune for your system
which GPUDirect RDMA is e GPU type, host architecture
used and

CUDA version: impact pipelining
overheads and P2P bandwidth
bottlenecks

MV2_ USE_GPUDIRECT _ | * Controls messages size until | 256KBytes | ® Tune for your system
RECEIVE_LIMIT which 1 hop design is used e GPU type, HCA type and
(GDR Write at the receiver) configuration

e Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

e http://mvapich.cse.ohio-state.edu/userguide/gdr/# tuning and usage parameters

Network Based Computing Laboratory

Application-Level Evaluation (HOOMD-blue)

64K Particles 256K Particles
3500
S _ 2500
c 3000 2 mMV2 mMV2+GDR
@ 2500 = 2000
o 2000 S 2X
2 3 1500
gD 1500 - o]
i 9 1000
2 1000 - Q
.— (Vp)
|_
= 0 - S 0 -
Z 4 8 16 32 g 4 8 16 32
Number of Processes < Number of Processes

. Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
. HoomDBlue Version 1.0.5
. GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA HCA=mIx5 0 MV2_IBA EAGER_THRESHOLD=32768
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_ LOOPBACK LIMIT=32768
MV2_USE_GPUDIRECT _GDRCOPY=1 MV2_USE_GPUDIRECT _GDRCOPY_LIMIT=16384

Network Based Computing Laboratory

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

Overview of MVAPICH2-GDR Features

e Multi-stream Communication for IPC

e CMA- based Intra-node Host-to-Host Communication Support
e MPI Datatype Support

e Support for Managed Memory

e Optimized Support for Deep Learning

Network Based Computing Laboratory

Multi-stream Communication using CUDA IPC on OpenPOWER and DGX-1

e Upto 16% higher Device to Device (D2D) bandwidth on OpenPOWER + NVLink inter-connect
e Upto30% higher D2D bandwidth on DGX-1 with NVLink

PY Pt-to-pt (D-D) Bandwidth: Pt-to-pt (D-D) Bandwidth:
Benefits of Multi-stream CUDA IPC Design Benefits of Multi-stream CUDA IPC Design

T 20000 = 40000
<} 18000 <]
2 30% better 9 33000 16% better
n 16000 n
% 14000 E 30000
E 12000 g— 25000
(7] [7,]
b S
s 10000 1~ 20000
p 8000 p
§ 'S 15000
E 0000 E 10000
2 4000 2

0 0

16K 32K 64K 128K 256K 512K 1M 2M 4M 128K 256K 512K 1M 2M 4M
Message Size (Bytes) Message Size (Bytes)
—1' t 4' t . ° —1— t 4_ t
sream Sreams Available since MVAPICH2-GDR-2.3a sream Sreams

Network Based Computing Laboratory

CMA-based Intra-node Host-to-Host Communication Support

e Up to 30% lower Host-to-Host (H2H) latency and 30% higher H2H Bandwidth

INTRA-NODE Pt-to-Pt (H2H) LATENCY INTRA-NODE Pt-to-Pt (H2H) BANDWIDTH
600 16000
14000

30% better 12000 30% better 1‘

10000
8000
6000
100 4000
0 i 2000 /
O 1 AN < 00 O N
— ™M 0 — —
— ™

500

o
o
o

N
o
o

Latency (us)
w
o
o
Bandwidth (MBps)

<t 00 O N < 00 O N < 0 O N < 0 O N <
O N N 4 N < OO 0 OMNIN 0N, O
NN O OO 1 MO NINMO A N M

TN O MNm O N < O O O N N v+ " N < 00 O N < 00 O N

A N1 O O — N un — M O N I o N <
— N < -1 N
Message Size (Bytes) Message Size (Bytes)
= MV2-GDR (w/out CMA) MV2-GDR (w/ CMA) = MV2-GDR (w/out CMA) MV2-GDR (w/ CMA)

MVAPICH2-GDR-2.3a
Intel Broadwell (E5-2680 v4 @ 3240 GHz) node — 28 cores
NVIDIA Tesla K-80 GPU, and Mellanox Connect-X4 EDR HCA
CUDA 8.0, Mellanox OFED 4.0 with GPU-Direct-RDMA

Network Based Computing Laboratory MUG’19

Overview of MVAPICH2-GDR Features

e MPI Datatype Support
e Support for Managed Memory

e Optimized Support for Deep Learning

Network Based Computing Laboratory

Non-contiguous Data Exchange

Halo data exchange

e Multi-dimensional data

e Row based organization

e Contiguous on one dimension

 Non-contiguous on other dimensions

e Halo data exchange
 Duplicate the boundary

v

 Exchange the boundary in each
iteration

Network Based Computing Laboratory

MPI Datatype support in MVAPICH2

e Datatypes support in MPI
— Operate on customized datatypes to improve productivity

— Enable MPI library to optimize non-contiguous data

At Sender:
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);

MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

e |nside MVAPICH?2
- Use datatype specific CUDA Kernels to pack data in chunks
- Efficiently move data between nodes using RDMA
- In progress - currently optimizes vector and hindexed datatypes
- Transparent to the user

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel
and Distributed Systems, Accepted for Publication.

Network Based Computing Laboratory

MPI Datatype Processing (Computation Optimization)

e Comprehensive support

. Targeted kernels for regular datatypes - vector, subarray, indexed_block

. Generic kernels for all other irregular datatypes

e Separate non-blocking stream for kernels launched by MPI library

. Avoids stream conflicts with application kernels
e Flexible set of parameters for users to tune kernels

° Vector
. MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

e MV2_CUDA_KERNEL_VECTOR_YSIZE

e Subarray

e MV2_CUDA_KERNEL SUBARR_TIDBLK_SIZE
e MV2_CUDA_KERNEL_SUBARR_XDIM
e MV2_CUDA_KERNEL_SUBARR_YDIM
e MV2_CUDA_KERNEL_SUBARR_ZDIM

J Indexed_block

e MV2_CUDA_KERNEL_IDXBLK_XDIM

Network Based Computing Laboratory

Performance of Stencil3D (3D subarray)

Stencil3D communication kernel on 2 GPUs

with various X, Y, Z dimensions using

MPI _Isend/Irecv

e DT: Direct Transfer, TR: Targeted Kernel

e Optimized design gains up to 15%, 15% and
22% compared to TR, and more than 86%
compared to DT on X, Y and Z respectively

2.5
2

T

Eis5 - 3

>

c

o 1

-

5
0.5

1 2 4 8 16 32 64 128 256
Size of DimY, [16,y,16]

N

[EY

Latency (ms)

o b)
o »nn », U N Wn

=0=DT «=@=TR

Enhanced

Size of DimX, [x,16,16]

32

64

128

256

Latency (ms)

0.5

8 16

Size of DimZ, [16,16,2]

32

Network Based Computing Laboratory

MPI Datatype Processing (Communication Optimization)

Common Scenario

MPI_Isend (A,.. Datatype,...
MPI_Isend (B,.. Datatype,...
MPI_Isend (C,.. Datatype,...
MPI_Isend (D,.. Datatype,...

—r ' N

MPI_Waitall (...);

*A, B...contain non-contiguous MPI Datatype

Waste of computing resources on CPU and GPU

A

Existing Desi

Isend(1) Isend(1) Wait cpu
\ a AN)
% Wait For - o % TCJ Wait For 5 % TCJ Wait For o -
y=) - Kernel = § p=a Kernel § p=a Kernel b § Progress |---
= (WFK) | £ >} (WFK) €~ (WFK)
. ; GPu
ﬂ Kernel on Stream F ‘1 Kernel on Stream F ‘1 Kernel on Stream f ------------
Proposed Design
Isend(1)Isend(2)Isend(3) Wfit CrU
L —Lr
]
ol (wliss Q= Progress
s (SR (= B O e o+t o&e B 0 0| 2 mmmmm----sesmemee-oo-e---
= = 5= L oy | TR =T =
E2 E2 €223 8=25 8=a 3
- = <1 4 |
Y % i ," '.' [I
ﬁ Kemelc;x!Stream '{;" s '.’ GPU
3 Y Expected Benefits
1 Kernel dn Stream } - >
’ Kernel on Stream "' |
|
Start Time Finish proposed Finish gcing

Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

Wilkes GPU Cluster

Bl Default B Callback-based m Event-based
1.2
Q
€
e 1
3
s 0.8
=
(8]
%06
e
204
©
€ 0.2
o
2
0
4 8 16 32
Number of GPUs

CSCS GPU cluster

Bl Default H Callback-based ® Event-based

Normalized Execution Time

1.2

1

0.8

0.6

0.4

0.2

0

e 2Ximprovement on 32 GPUs nodes
e 30% improvement on 96 GPU nodes (8 GPUs/node)

16 32 64 96

Number of GPUs

sk w) ybiay

Cosmo model: http://www?2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data
Movement Processing on Modern GPU-enabled Systems, IPDPS’16

Network Based Computing Laboratory

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu

MVAPICH2-GDR: Enhanced Derived Datatype

e Kernel-based and GDRCOPY-based one-shot packing for inter-socket and inter-node communication

e Zero-copy (packing-free) for GPUs with peer-to-peer direct access over PCle/NVLink

GPU-based DDTBench mimics MILC
communication kernel

25

20
S
315
()]
g 10
(Vp]

5

0

[6,8,8,88] [68,8,8,16] [6,8,8,16,16] [6,16,16,16,16]
MILC

Problem size

OpenMPI1 4.0.0 m MVAPICH2-GDR 2.3.1 ® MVAPICH2-GDR-Next
Platform: Nvidia DGX-2 system

(NVIDIA Volta GPUs connected with NVSwitch), CUDA 9.2

25

= = N
o U o

Execution Time (s)

Ul

Communication Kernel of COSMO Model
(https://qithub.com/cosunae/HaloExchangeBenchmarks)

Improved 3.4X
Improved 15X

16 32 64
Number of GPUs

B MVAPICH2-GDR 2.3.1 ® MVAPICH2-GDR-Next
Platform: Cray CS-Storm

(16 NVIDIA Tesla K80 GPUs per node), CUDA 8.0

Network Based Computing Laboratory

https://github.com/cosunae/HaloExchangeBenchmarks

Overview of MVAPICH2-GDR Features

e Support for Managed Memory

e Optimized Support for Deep Learning

Network Based Computing Laboratory

Enhanced Support for Intra-node Unified Memory

e CUDA Unified Memory(UM) => no memory pin down
e No IPC support for intra-node communication on K80 with MV2-GDR
® No GDR support for Inter-node communication

e |Initial and basic support in MVAPICH2-GDR

® For both intra- and inter-nodes use “pipeline

10000

1000
100 .___.’_._‘_—q—-.‘_"/

10

Lateny (us)

through” host memory

® Enhance intra-node UM to use IPC 1
. . . ¥ % 6 N 3 % 6 & =2 2 2
® Double buffering pair-wise IPC-based scheme IS B N
Message Size (Bytes)
® Brings IPC performance to UM MM-MV2-GDR _ ~a-MM-MV2-GDR-Opt

e High performance and high productivity
® Available since MVAPICH2-GDR 2.2RC1

K. Hamidouche, A. Awan, A. Venkatesh, and D. K Panda, CUDA M3: Designing Efficient
CUDA Managed Memory-aware MPI by Exploiting GDR and IPC, HiPC ‘16

Network Based Computing Laboratory MUG’19

Characterizing Unified Memory aware MPI on modern GPUs

On V100 with MV2-GDR

10000
1000

® |Improved UM support in Pascal & Volta GPUs through:

100

e Advanced GPU page fault engines
e cudaMemPrefetch and cudaMemAdvise APIs provide

Latency (us)

10

1
¥

more control for UM data placement ¥ % %% %%

® Arethe UM designs developed during Kepler era still valid? Message Size (Bytes)

256K
512K
1M
2M
4M

MM-MV2-GDR -=-MM-MV2-GDR-Opt

e Carried out an in-depth characterization
On V100 with MV2-GDR and OMPI
® Our characterization studies show:
e The UM designs from Kepler era are still valid
® Theyare 4.2X and 2.8X better in latency compared to 0
| preeereeess

MVAPICH2-GDR and Open MPI 01

10000

1000
100 ﬂ_.-'.-.’-’.

Latency (us)
'

128
1
2K
8K
2

128K
512K
2M

Message Size (Bytes)
K. V. Manian, A. Awan, A. Ruhela, C. Chu, H. Subramoni and D. K Panda, Characterizing
CUDA Unified Memory (UM)-Aware MPI Designs on Modern GPU Architectures, GPGPU ‘19 MM-MV2-GDR -#-MM-MV2-GDR-Opt

Workshop, in conjunction with ASPLOS ’19, April ‘19

MM-OMPI

Network Based Computing Laboratory

Overview of MVAPICH2-GDR Features

e Optimized Support for Deep Learning

Network Based Computing Laboratory

Deep Learning: New Challenges for Runtimes

4 Desired
e Scale-up: Intra-node Communication

— Many improvements like:

NCCL2
cuDNN MPI

MKL-DNN

e NVIDIA cuDNN, cuBLAS, NCCL, etc.
e CUDA 9 Co-operative Groups

e Scale-out: Inter-node Communication

— DL Frameworks — most are optimized for single-
node only

— Distributed (Parallel) Training is an emerging

gRPC

trend
e OSU-Caffe — MPI-based
e Microsoft CNTK — MPI/NCCL2 Hadoo P
¢ Google TensorFlow — gRPC-based/MPI/NCCL2
¢ Facebook Caffe2 — Hybrid (NCCL2/Gloo/MPI)

Scale-up Performance

. PyTorch Scale-out Performance

Network Based Computing Laboratory

Data Parallel Deep Learning and MPI Collectives

e Major MPI Collectives Loop {} |___iedcommba® | 20929090900
. . . MPI_Bcast (GPU)----—""_ e N T : '
involved in Designing s (GPu L Sy T e X t tRalm |

_ - I | | 5 i Propagation |
distributed frameworks o Params | Params ™~ Params ion Params Bl i
=) = = 2
e MPI_Bcast — required for © i @ |

----------------- T_--___"--___--"_'I'---'—__"--_-_--__r_--—___--___--—___--—___--__

DNN parameter exchange L |t L |t L |t L |t
I I 1 | e
L L L I i
e MPI_Reduce — needed for Fl =[] F| 2+ |8 F| |8 F| =[B! 2 Forward !
. I .. I . [. - |

. . [I I Back
gradient accumulation from] ! L ! L ! L, t Rackwaid |
v n : 4 n : v n : v : Pass :
mUItIpIe solvers packed_redu | | packed_redu | | packed_redu | | packed_redu | '"m=======--- !
ce_buff | ce_buff | ce_buff | ce_buff

e MPI_Allreduce —use just |-~~~ - it ’c;\--““-“:;/ ------- :::::—""“" ----------------------

. ~~~s~~~ \\ /, _ —"” ___________ .

one Allreduce instead of ~=~l, 2o~~~ MPI_Reduce (GPU 0) r —
S I 3. Gradient |

Reduce and Broadcast SECIEmE ! .|
ApplyUpdates |« ‘ | | | I i Aggregation i

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

Network Based Computing Laboratory MUG’19

Distributed Training using TensorFlow (TF)

e TensorFlow is the most popular DL

Accelerated|
framework gRPC J gRPC
e gRPCis the official distributed gRPC+MPI
training runtime | - .
— Many problems for HPC use-cases | Distributed gRPC+X J gRPC+Verbs
TensorFlow : ’
e Community efforts - Baidu and gRPC+GDR
Uber’s Horovod have added MPI 5 g
Baidu-MPI
support to TF across nodes | |
No-gRPC , \ / MPI
e Need to understand several Horovod \; ’
- : ‘ ’ NCCL
options currently available -

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”,
CCGrid “19. https://arxiv.org/abs/1810.11112

Network Based Computing Laboratory

https://arxiv.org/abs/1810.11112

Scalable TensorFlow using Horovod, MPI, and NCCL

AlOOO

E 900 =
e Efficient Allreduce is crucial for Horovod'’s R
overall training performance R
€ 400 & E§§
— Both MPI and NCCL designs are available 8 300
o 200 ;;E .%5
 We have evaluated Horovod extensively £
. 1 2 4 8 16

and compared across a wide range of No. of GPUS

HHorovod-MP| EHorovod-NCCL2 E Horovod-MPI-Opt (Proposed) = Ideal

designs using gRPC and gRPC extensions 16384

‘g 4096
e MVAPICH2-GDR achieved up to 90% 2 on
@
scaling efficiency for ResNet-50 Training $ 6
- 64
o
on 64 Pascal GPUs AT
©
E 1] .]
_— .. . 1 2 4 8 16 32 64
Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: No. of Nodes (GPUs)
Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. 0. of Nodes
https://arxiv.org/abs/1810.11112 B Horovod-NCCL2 [Horovod-MPI-Opt Ideal

Network Based Computing Laboratory MUG’19

https://arxiv.org/abs/1810.11112

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI
e 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

50000 ~10X better e000000 OpenMPI is ~5X slower
5000000 than Baidu

10000 30X b #90
~ etter 40000
4000000 MV2 is ~2X better
1000 35000 i
W—/-‘ iy 30000 3000000 than Baldu
25000 2000000

© 20000

10 1000000
15000

100000

Latency (us)

100

Latency (us)

tency (u

10000
1 S o N > D o D
Q "y > © X% \e) ~
TOONIREIILLSGIB e 5000 IS & A P
A NN OOOdMN O - o= - Yo 4) e} N "% ™ o)
AN 00NN AN Be) © > A ™) ©
— N O m o 0 N % © ,e) ,\/‘o <,)°)
- 512K 1M 2M 4M
Message Size (Bytes) Message Size (Bytes)
Message Size (Bytes)
—o—MVAPICH2 —e=BAIDU OPENMPI —=o—MVAPICH2 —e—BAIDU OPENMPI
—=o—MVAPICH2 —e—BAIDU OPENMPI

*Available since MVVAPICH2-GDR 2.3a

Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 - Allreduce Operation

Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases

MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

[]
100000 *

1000
10000
J__.._./ ~1.2X better
=9 L o—0—
100 C= F¢j
3 ~3X better 3 1000 /
= O
g g
© S 100
10
10
1 1
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes)

4 8
Message Size (Bytes)

=o—MVAPICH2-GDR NCCL2

NCCL2

—e—MVAPICH2-GDR
Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

MUG’19

Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 - Allreduce Operation (DGX-2)

Optimized designs in upcoming MVAPICH2-GDR offer better/comparable performance for most cases

e MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
70 10000
(A

~2.5X better o
1000 ‘ /-

n D
o o
(

D
o

100

Latency (us)

w
o

Latency (us)

l ~5.8X better

N
o

10

[EEN
o

o

4M 8M 16M 32M 64M 128M 256M

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Message Size (Bytes)

Message Size (Bytes)

=@—MVAPICH2-GDR-Next NCCL-2.4 =@—-MVAPICH2-GDR-Next NCCL-2.4

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

Network Based Computing Laboratory

MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale

e Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases

e MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

Latency on 1,536 GPUs Bandwidth on 1,536 GPUs 128MB Message
450 6 10
400 9
5 1.7X better 8
350 = 7
o
300 — © 6 1.7X better
n 4
G o s 5
= 250 1.6X better e b=
O < 3 4
T 200 53 5 T
t® 2 8 3
- T 2
150 1 g 5
® 1
100 o | 'm m |] - 2 &
50 1 24 48 96 192 384 768 1536
Number of GPUs
0
<t 00 O N < 00 O N ¥ ¥ ¥ ¥ ¥ O
e gl R TN Y3 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes)
SpectrumMPI 10.2.0.11 m OpenMPI 4.0.1 m NCCL 2.4 ®m MVAPICH2-GDR-2.3.2
=@—MVAPICH2-GDR-2.3.2 NCCL2.4 B MVAPICH2-GDR-2.3.2 NCCL 2.4

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect

Network Based Computing Laboratory MUG’19

Distributed Training with TensorFlow and MVAPICH2-GDR

e ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)

_ o Actual throughput
Scaling Efficiency = X 100%
Ideal throughput at scale

7000 . 100

9% higher 90

6000 f 20

T 5000 5 70
S >

(@)

9 4000 g %

g = 50

8’03000 It;'; 40
& £

£ 2000 g 30

20

1000 I 10

, =m VN 0

1 2 4 8 16 1 2 4 8 16
Number of GPUs Number of GPUs
NCCL-2.4 ® MVAPICH2-GDR-2.3.2 NCCL-2.4 ® MVAPICH2-GDR-2.3.2

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

Network Based Computing Laboratory MUG’19

Distributed Training with TensorFlow and MVAPICH2-GDR

e ResNet-50 Training using
TensorFlow benchmark on
SUMMIT -- 1536 Volta
GPUs!

e 1,281,167 (1.2 mil.) images

e Time/epoch = 3.6 seconds

e Total Time (90 epochs)
=3.6 x90 =332 seconds =
5.5 minutes!

400

w
Ul
o

w
o
o

N
(92
o

150

[N
o
o

Image per second (Thousands)
S
o

(O
o

o

*We observed errors for NCCL2 beyond 96 GPUs
Platform: The Summit Supercomputer (#1 on Top500.0rg) — 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

2 4 6 12 24 48

ImageNet-1k has 1.2 million images

MVAPICH2-GDR reaching ~0.35 million
images per second for ImageNet-1k!

__--III
9% 192 384 768

1536
Number of GPUs

NCCL-2.4 ® MVAPICH2-GDR-2.3.2

Network Based Computing Laboratory

MVAPICH2 Software Family

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), MVAPICH2-X
OSU INAM (InfiniBand Network Monitoring and Analysis),

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric | MVAPICH2-X-AWS
Adapter (EFA)

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning | MVAPICH2-GDR
Applications

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, MVAPICH2-EA
RoCE (v1/v2)

MPI Energy Monitoring Tool OEMT
InfiniBand Network Analysis and Monitoring OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance OMB

Network Based Computing Laboratory

Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)

e MVAPICH2-EA 2.1 (Energy-Aware)
e A white-box approach
e New Energy-Efficient communication protocols for pt-pt and collective operations

e |ntelligently apply the appropriate Energy saving techniques
e Application oblivious energy saving

e OEMT
e Alibrary utility to measure energy consumption for MPI applications
e Works with all MPI runtimes
e PRELOAD option for precompiled applications
e Does not require ROOT permission:

e Asafe kernel module to read only a subset of MSRs

Network Based Computing Laboratory

Designing Energy-Aware (EA) MPI Runtime

Overall application Energy

Expenditure

Network Based Computing Laboratory

MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)

Energy Profile (relative to default MPI) - 2048 Processes
e An energy efficient runtime that

1
provides energy savings without 0.75
application knowledge 0.5

e Uses automatically and 0.25 II
transparently the best energy o

cormedd cloverleaf amg-27pt amg-7pt miinirmdw 1 minimdw3
Iever‘ minighost minife amg-pde graphS00 minimdwz minimdwd
Bl F=s=simistic MPI | EE

e Provides guarantees on

. . . Speedup (relative to default MPI) - 2048 processes
maximum degradation with 5-

41% savings at<=5% L mmo g o _am BE_____

degradation
e Pessimistic MPI applies energy
reduction lever to each MPI call

cloverleaf amg-27pt amg-7 pt rmiinirmdw1 mirimadw3
mlnlgh-u:ust minife amg-pde graphS00 mininmdv2 muirinmed w3
B F=ssimistic MPI B Eana

A Case for Application-Oblivious Energy-Efficient MPI Runtime A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D.
K. Panda, D. Kerbyson, and A. Hoise, Supercomputing ‘15, Nov 2015 [Best Student Paper Finalist]

Network Based Computing Laboratory MUG’19

MVAPICH2 Software Family

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), MVAPICH2-X
OSU INAM (InfiniBand Network Monitoring and Analysis),

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric | MVAPICH2-X-AWS

Adapter (EFA)

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning | MVAPICH2-GDR
Applications

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, MVAPICH2-EA
RoCE (v1/v2)

MPI Energy Monitoring Tool OEMT
InfiniBand Network Analysis and Monitoring OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance OMB

Network Based Computing Laboratory

Overview of OSU INAM

e A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime

— http://mvapich.cse.ohio-state.edu/tools/osu-inam/

e Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes

e Capability to analyze and profile node-level, job-level and process-level activities for MPI communication
— Point-to-Point, Collectives and RMA

e Ability to filter data based on type of counters using “drop down” list
e Remotely monitor various metrics of MPI processes at user specified granularity
e "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X
e Visualize the data transfer happening in a “live” or “historical” fashion for entire network, job or set of nodes
e OSUINAM 0.9.4 released on 11/10/2018
— Enhanced performance for fabric discovery using optimized OpenMP-based multi-threaded designs
— Ability to gather InfiniBand performance counters at sub-second granularity for very large (>2000 nodes) clusters
— Redesign database layout to reduce database size

— Enhanced fault tolerance for database operations
e Thanks to Trey Dockendorf @ OSC for the feedback

— OpenMP-based multi-threaded designs to handle database purge, read, and insert operations simultaneously
— Improved database purging time by using bulk deletes
— Tune database timeouts to handle very long database operations

— Improved debugging support by introducing several debugging levels

Network Based Computing Laboratory MUG’19

http://mvapich.cse.ohio-state.edu/tools/osu-inam/

OSU INAM Features

Comet@SDSC --- Clustered View Finding Routes Between Nodes
(1,879 nodes, 212 switches, 4,377 network links)

e Show network topology of large clusters

e Visualize traffic pattern on different links

e Quickly identify congested links/links in error state

e See the history unfold — play back historical state of the network

Network Based Computing Laboratory

OSU INAM Features (Cont.)

- ol Pk)
s
k1 AT E 0
- rurk 14, .
4 e
4 i
" = | |

w =25 [i) = W ERad e P
[Ama s | e e LE A T e
. g P - Ll [R 12 =T P 14 P o4 P 14
LID: 33 e e o [hwn = o o s i o
GUID: O0x0002c50200424428 — = o mmen T = =] R e
MNAME: MFO;ibswitch:MTS3610/L07/U1 ey Pt P L e e P 1 e . Rt
- 35 e e T o [niein | == = [e | | W | | |
D e EE S = - = e
fiignmm B BN omom o om m =
] B N s - s [s o~
i - e D e e e e T e e
- ’ i o ws s = o — - -~ -
. [Rma BN BT | s = ez | |
B B N O B B B O
T T pawe et Feral hemo .o [T rame | TAme Ay

Visualizing a Job (5 Nodes)
Estimated Process Level Link Utilization

e Job level view e Estimated Link Utilization view
e Show different network metrics (load, error, etc.) for any live job e (Classify data flowing over a network link at
e Play back historical data for completed jobs to identify bottlenecks different granularity in conjunction with

e Node level view - details per process or per node MVAPICH2-X 2.2rcl

e CPU utilization for each rank/node * Joblevel and

o Process level

e Bytes sent/received for MPI operations (pt-to-pt, collective, RMA) o .
More Details in Tutorial/Demo

e Network metrics (e.g. XmitDiscard, RcvError) per rank/node
Session Tomorrow

Network Based Computing Laboratory

OSU Microbenchmarks
e Available since 2004

Suite of microbenchmarks to study communication performance of various programming models

e Benchmarks available for the following programming models

— Message Passing Interface (MPI)

— Partitioned Global Address Space (PGAS)
e Unified Parallel C (UPC)
e Unified Parallel C++ (UPC++)
e OpenSHMEM

e Benchmarks available for multiple accelerator based architectures

— Compute Unified Device Architecture (CUDA)
— OpenACC Application Program Interface

e Part of various national resource procurement suites like NERSC-8 / Trinity Benchmarks
e Continuing to add support for newer primitives and features

e Please visit the following link for more information

— http://mvapich.cse.ohio-state.edu/benchmarks/

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/benchmarks/

Applications-Level Tuning: Compilation of Best Practices

e MPI runtime has many parameters
e Tuning a set of parameters can help you to extract higher performance

e Compiled a list of such contributions through the MVAPICH Website
— http://mvapich.cse.ohio-state.edu/best practices/

e [nitial list of applications

— Amber

— HoomDBlue

— HPCG

— Lulesh

— MILC

— Neuron

— SMG2000

— Cloverleaf

— SPEC (LAMMPS, POP2, TERA_TF, WRF2)
e Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu.

e We will link these results with credits to you.

Network Based Computing Laboratory

http://mvapich.cse.ohio-state.edu/best_practices/

Amber: Impact of Tuning Eager Threshold

Ul
o
o

Default ®m Tuned

I
o
o
|
|

w
)
)
|
|

200 -+

Execution Time (s)

100 +—

T.:
©

o\

04 128
Number of Processes

Data Submitted by: Dong Ju Choi @ UCSD

256

Tuning the Eager threshold has a significant
impact on application performance by avoiding
the synchronization of rendezvous protocol
and thus yielding better communication
computation overlap

19% improvement in overall execution time at
256 processes

Library Version: MVAPICH2 2.2

MVAPICH Flags used

— MV2_IBA EAGER_THRESHOLD=131072
— MV2_VBUF _TOTAL SIZE=131072
Input files used

— Small: MDIN

— Large: PMTOP

Network Based Computing Laboratory

http://www.sdsc.edu/%7Edchoi/amber/mdin
http://www.sdsc.edu/%7Edchoi/amber/prmtop

MiniAMR: Impact of Tuning Eager Threshold

MiniAMR e Tuning the Eager threshold has a significant
__205 impact on application performance by avoiding
§ 200 the synchronization of rendezvous protocol
GEJ /\\ and thus yielding better communication
.= 195 :
= o computation overla
- \ 8% P P
.2 190 e 8% percent reduction in total communication
©
£ 185 time
S e Library Version: MVAPICH2 2.2
e 180
S MVAPICH Flags used
175 [[[[[[[[[[[[

0 N X X M X X X XXX XS — MV2_IBA_EAGER_THRESHOLD=32768

N = = N < 00 O N < 00 O N —

= < o © o un A — MV2_VBUF_TOTAL_SIZE=32768

Eager Threshold (Bytes)
Data Submitted by Karen Tomko @ OSC and Dong Ju Choi @ UCSD

Network Based Computing Laboratory MUG’19

SMG2000: Impact of Tuning Transport Protocol

e UD-based transport protocol selection

v ;38 Default ™ Tuned benefits the SMG2000 application
GE) 60 22% o 22% and 6% on 1,024 and 4,096 cores,
ii 50 1_ respectively
% 40 | e Library Version: MVAPICH2 2.1
§ 30— e MVAPICH Flags used
w 20 —— — MV2_USE_ONLY _UD=1
18 :— e System Details

1024 2048 4096 — Stampede@ TACC

Number of Processes
Data Submitted by Jerome Vienne @ TACC

— Sandybridge architecture with dual 8-cores
nodes and ConnectX-3 FDR network

Network Based Computing Laboratory

Neuron: Impact of Tuning Transport Protocol

e UD-based transport protocol selection

— 140 benefits the SMG2000 application
<2 Default ® Tuned _ _
o 120 +— e 15% and 27% improvement is seen for 768 and
E 100 - 1,024 processes respectively
c gg | e Library Version: MVAPICH2 2.2
8 60 27% * MVAPICH Flags used
5 4
O — MV2_USE_ONLY UD=1
£ 40 | |
mn e |nput File

20 — YUEtAI2012

0) e System Details
384 512 768 1024 — Comet@SDSC

Number of Processes — Haswell nodes with dual 12-cores socket per
Data Submitted by Mahidhar Tatineni @ SDSC node and Mellanox FDR (56 Gbps) network.

Network Based Computing Laboratory

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144570&file=%5CYuEtAl2012%5C

HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model

=
N
°

Partial subscription nature of hybrid MPI+OpenMP
H Default Tuned programming requires a new level of collective tuning

— For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce

—

shows 51% improvement on 2,048 cores

24%
- — 8 OpenMP threads per MPI processes

e Library Version: MVAPICH2 2.1

e MVAPICH Flags used
— The tuning parameters for hybrid MPI+OpenMP

e 24% improvement on 512 cores

O
0o

o
~

programming models is on by default from MVAPICH2-2.1
onward

—
o

e System Details
— Stampede@ TACC

Normalized Execution Time
o
(@)

o

— Sandybridge architecture with dual 8-cores nodes and

H PCG ConnectX-3 FDR network
Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC

Network Based Computing Laboratory MUG’19

LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model

1.2 e Partial subscription nature of hybrid MPI+OpenMP
H Default Tuned programming requires a new level of collective tuning
1 ! 49/6 — For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce

shows 51% improvement on 2,048 cores

* 4% improvement on 512 cores

O
0o

— 8 OpenMP threads per MPI processes
e Library Version: MVAPICH2 2.1

e MVAPICH Flags used
— The tuning parameters for hybrid MPI+OpenMP

o
~

programming models is on by default from MVAPICH2-2.1
onward

—
o

e System Details
— Stampede@ TACC

Normalized Execution Time
o
(@)

o

— Sandybridge architecture with dual 8-cores nodes and
Lulesh ConnectX-3 FDR network

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC

Network Based Computing Laboratory MUG’19

MILC: Impact of User-mode Memory Registration (UMR) based tuning

~
&)

Default M Tuned

U1 O
o O
|

D
o
|

W
o
|

Execution Time (s)
ND
o
|

[HY
o
i

1.

o

512
Number of Processes

Data Submitted by Mingzhe Li @ OSU

Non-contiguous data processing is very common on HPC
applications. MVAPICH2 offers efficient designs for MPI
Datatype support using novel hardware features such as
UMR

UMR-based protocol selection benefits the MILC
application.

— 4% and 6% improvement in execution time at 512 and 640
processors, respectively

Library Version: MVAPICH2-X 2.2

MVAPICH Flags used
— MV2_USE_UMR=1

System Details

— The experimental cluster consists of 32 Ivy Bridge Compute nodes
interconnected by Mellanox FDR.

— The Intel lvy Bridge processors consist of Xeon dual ten-core
sockets operating at 2.80GHz with 32GB RAM and Mellanox OFED
version 3.2-1.0.1.1.

Network Based Computing Laboratory

HOOMD-blue: Impact of GPUDirect RDMA Based Tuning

" 4000
Q. -
Qo vV
&H e 3000
w ——
E g 2000
= O
¢ @
g o 1000
Qo
z = 0
" 3000
TR
= 0O
o E 2000
ETE
=8
gp ; 1000
ze 0

64K Particles

Default ™ Tuned

Llf‘f
4 8 16 32

Number of Processes

256K Particles

MV2 ® MV2+GDR

a B ,
4 8 16 32

Number of Processes

Data Submitted by Khaled Hamidouche @ OSU

HOOMD-blue is a Molecular Dynamics
simulation using a custom force field.

GPUDirect specific features selection and
tuning significantly benefit the HOOMD-blue
application. We observe a factor of 2X
improvement on 32 GPU nodes, with both 64K
and 256K particles

Library Version: MVAPICH2-GDR 2.2

MVAPICH-GDR Flags used

— MV2_USE_CUDA=1

— MV2_USE_GPUDIRECT=1

— MV2_GPUDIRECT_GDRCOPY=1
System Details

— Wilkes@Cambridge

— 128 Ivybridge nodes, each node is a dual 6-
cores socket with Mellanox FDR

Network Based Computing Laboratory

Application Scalability on Skylake and KNL with Omni-Path

MiniFE (1300x1300x1300 ~ 910 GB)

60 1200
- 50 -o-MVAPICH2 1000
o 40 800
=
[30 600
[
2 20 400
3
£ 10 200
0 0
2048 4096 8192
No. of Processes (Skylake: 48ppn)
140 3500
z 120 MVAPICH2 3000
£ 100 2500
= 80
|5 2000
5 60 1500
Q
5 40 1000
20 500
0 0
2048 4096 8192

No. of Processes (KNL: 64ppn)

NEURON (YuEtAI2012)

2000
——MVAPICH2
1500
1000
500
0
48 96 192 384 768
No. of Processes (Skylake: 48ppn)
1500
MVAPICH2
1000
500
0
64 128 256 512 1024 2048 4096

No. of Processes (KNL: 64ppn)

Cloverleaf (bm64) MPI+OpenMP,
NUM_OMP_THREADS =2

--MVAPICH2

48 96 192 384 768 1536 3072
No. of Processes (Skylake: 48ppn)
MVAPICH2

68 136 272 544 1088 2176 4352

No. of Processes (KNL: 68ppn)

Courtesy: Mahidhar Tatineni @SDSC, Dong Ju (DJ) Choi@SDSC, and Samuel Khuvis@OSC ---- Testbed: TACC Stampede2 using MVAPICH2-2.3b

Runtime parameters: MV2_SMP|_LENGTH_QUEUE=524288 PSM2_MQ_RNDV_SHM_THRESH=128K PSM2_MQ_RNDV_HF|_THRESH=128K

Network Based Computing Laboratory

MUG’19

SPEC MPI 2007 Benchmarks: Broadwell + InfiniBand

160

W Intel MPI 18.1.163
140

® MVAPICH2-X-2.3rcl
120

100

80

60

Execution Time in (s)

40

20

MILC Leslie3D POP2 LAMMPS WRF2 LU
MVAPICH2-X outperforms Intel MPI by up to 31%

Configuration: 448 processes on 16 Intel E5-2680v4 (Broadwell) nodes having 28 PPN and interconnected
with 100Gbps Mellanox MT4115 EDR ConnectX-4 HCA

Network Based Computing Laboratory MUG’19

MVAPICH2 - Plans for Exascale

e Performance and Memory scalability toward 1-10M cores

e Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF ...)
e MPI + Task*

e Enhanced Optimization for GPU Support and Accelerators

e Taking advantage of advanced features of Mellanox InfiniBand
e Tag Matching*
e Adapter Memory*

e Enhanced communication schemes for upcoming architectures

e Intel Optane*
e BlueField*
o CAPI*

e Extended topology-aware collectives

e Extended Energy-aware designs and Virtualization Support

e Extended Support for MPI Tools Interface (as in MPI 3.0)

e Extended FT support

e Support for * features will be available in future MVAPICH2 Releases

Network Based Computing Laboratory MUG’19

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

e Supported through X-ScaleSolutions (http://x-scalesolutions.com)
e Benefits:

— Help and guidance with installation of the library

— Platform-specific optimizations and tuning

— Timely support for operational issues encountered with the library
— Web portal interface to submit issues and tracking their progress
— Advanced debugging techniques

— Application-specific optimizations and tuning

— Obtaining guidelines on best practices

— Periodic information on major fixes and updates .
— Information on major releases _Sca I eSOl Utlo NS

— Help with upgrading to the latest release

— Flexible Service Level Agreements

e Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years

Network Based Computing Laboratory

http://x-scalesolutions.com/

Silver ISV Member for the OpenPOWER Consortium

e Recently joined the OpenPOWER Consortium as a silver ISV member
e Provides flexibility:

— To have MVAPICH2, HiDL and HiBD libraries getting integrated into the OpenPOWER software stack
— A part of the OpenPOWER ecosystem

— Can participate with different vendors for bidding, installation and deployment process

-ScaleSolutions

Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

@ NN Be Microsoft - arm SRax

P Office of

Science
Cmmmmmm——— Mellanox @PLOGIC
: . S Cisco SYSTEMS
intel) ‘<7Lgmgﬂx <X NVIDIA. " %S w
NEtA.pp micr OS}fStEF‘I"IS
Equipment Support by
MDA, inteD i SN A
Mellanox u q r m AM D microsystems

EEEEEEEEEEEE

A s SMicroway SANVIDIA. o dac

Network Based Computing Laboratory

Personnel Acknowledgments

Current Students (Graduate) Current Research Scientist Current Post-doc
- A.Awan (Ph.D.) - Kamal Raj (M.S.) - Q.Zhou(Ph.D.) — H.Subramoni - M.S. Ghazimeersaeed
— M. Bayatpour (Ph.D.) — K.S. Khorassani (Ph.D.) — A.Ruhela
— C.-H. Chu (Ph.D.) — P.Kousha (Ph.D.) — K. Manian

_ Current Students (Undergraduate)
— J. Hashmi (Ph.D.)

A. Quentin (Ph.D.)

A Jain (Ph.D) _ B Ramesh (M.) — V.Gangal (B.S.) Current Research Specialist
-~ K.S.Kandadi (M.S.) — S.Xu(M.S.) — N. Sarkauskas (B.S.) — J.Smith
Past Students Past Research Scientist
_ A. Augustine (M.S.) - T. Gangadharappa (M.S.) - P. Lai (M.S.) - R. Rajachandrasekar (Ph.D.) .
_ P. Balaji (Ph.D.) - K. Gopalakrishnan (M.S.) — J.Liu(Ph.D.) - D. Shankar (Ph.D.) — K. Hamidouche
- R.Biswas (M.S.) - W.Huang(Ph.D.) - M. Luo (Ph.D.) - G.Santhanaraman (Ph.D.) - S.Sur
_ s Bhagvat (MS) - W.liang(M.S.) - A.Mamidala (Ph.D.) - A.Singh(Ph.D.) - Xlu
_ A Bhat(MS) - J.Jose (Ph.D.) - G.Marsh (M.S.) - J.Sridhar (M.S.) Past Programmers
— D.Buntinas (Ph.D.) — S.Kini (M.S.) - V.Meshram (M.S.) — S.Sur(Ph.D.) — D. Bureddy
- L. Chai (Ph.D.) B M. Koop (Ph.D.) B A. Moody (M.S.) - " Su‘bramoni (Ph.D. - J. Perkins
_ B.Chandrasekharan (M.S) ~— K Kulkarni (M.S.) — S.Naravula (Ph.D.) - K. Vaidyanathan (Ph.D.)
_ S. Chakraborthy (Ph.D.) - R. Kumar (M.S.) - R. Noronha (Ph.D.) - A. Vishnu (Ph.D.) Past Research Specialist
— N.Dandapanthula (M.S.) - S.Krishnamoorthy (M.S.) — X.Ouyang (Ph.D.) - J.Wu(Ph.D.) — M. Arnold
— V.Dhanraj (M.S) - K.Kandalla (Ph.D.) - S.Pai(MsS.) - W.Yu(Ph.D)
- M.Li(Ph.D.) — S.Potluri (Ph.D.) - J.Zhang(Ph.D.)
Past Post-Docs
- D. Banerjee - J.Lin - S. Marcarelli
- X. Besseron - M. Luo - J. Vienne
- H-W.lJin — E. Mancini - H.Wang

Network Based Computing Laboratory MUG’19

Thank Youl!

panda@cse.ohio-state.edu

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

P C X . :
E= MVAPICH e HiBD HiDL
$ MPI, PGAS and Hybrid MPI+PGAS Library i
High-Performance High-Petrformance
Big Data '
The High-Performance MPI/PGAS Project g Deep Learning
http://mvapich.cse.ohio-state.edu/ The High-Performance Big Data Project The High-Performance Deep Learning Project
Follow us on Twitter: @mvapich http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu/

	How to Boost the Performance of Your HPC/AI Applications with MVAPICH2 Libraries?
	Parallel Programming Models Overview
	Brief History of Deep Learning (DL)
	Understanding the Deep Learning Resurgence
	Deep Learning, Many-cores, and HPC
	Supporting Programming Models for Multi-Petaflop and Exaflop Systems: Challenges
	Designing (MPI+X) for Exascale
	Overview of the MVAPICH2 Project
	Architecture of MVAPICH2 Software Family (for HPC and DL)
	Strong Procedure for Design, Development and Release
	MVAPICH2 Software Family
	MVAPICH2 2.3.2
	Overview of MVAPICH2 Features
	Towards High Performance and Scalable Startup at Exascale
	Startup Performance on KNL + Omni-Path
	Startup Performance on TACC Frontera
	On-demand Connection Management for OpenSHMEM+MPI
	How to Get the Best Startup Performance with MVAPICH2?
	Overview of MVAPICH2 Features
	One-way Latency: MPI over IB with MVAPICH2
	Bandwidth: MPI over IB with MVAPICH2
	Inter-node Point-to-Point Tuning: Eager Thresholds
	Intra-node Point-to-Point Performance on OpenPower
	Intra-node Point-to-point Performance on ARM Cortex-A72
	Overview of MVAPICH2 Features
	Hybrid (UD/RC/XRC) Mode in MVAPICH2
	Overview of MVAPICH2 Features
	MVAPICH2 Multi-Rail Design
	Performance Tuning on Multi-Rail Clusters
	Overview of MVAPICH2 Features
	Process Mapping support in MVAPICH2
	Preset Process-binding Policies – Bunch
	Preset Process-binding Policies – Scatter
	Process and thread binding policies in hybrid MPI+Threads
	Binding Example in Hybrid (MPI+Threads)
	Binding Example in Hybrid (MPI+Threads) ---- Cont’d
	Binding Example in Hybrid (MPI+Threads) ---- Cont’d
	User-Defined Process Mapping
	Overview of MVAPICH2 Features
	Collective Communication in MVAPICH2
	Hardware Multicast-aware MPI_Bcast on TACC Stampede
	MPI_Scatter - Benefits of using Hardware-Mcast
	Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)
	Benefits of SHARP Allreduce at Application Level
	Problems with Blocking Collective Operations
	Concept of Non-blocking Collectives
	Non-blocking Collective (NBC) Operations
	How do I write applications with NBC?
	P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives
	Evaluation of SHArP based Non Blocking Allreduce
	Presentation Overview
	MPI Tools Information Interface (MPI_T)
	Co-designing Applications to use MPI-T
	Performance Engineering Applications using MVAPICH2 and TAU
	Enhancing MPI_T Support
	PVARs Exposed by MVAPICH2
	CVARs Exposed by MVAPICH2
	Using MVAPICH2 and TAU
	VBUF usage without CVARs
	VBUF Memory Usage Without and With CVAR
	MVAPICH2-Azure 2.3.2
	Performance of Radix
	Performance of FDS (HC)
	MVAPICH2 Software Family
	MVAPICH2-X for MPI and Hybrid MPI + PGAS Applications
	MVAPICH2-X 2.3rc2
	MVAPICH2-X Feature Table
	Overview of MVAPICH2-X Features
	Minimizing Memory Footprint by Direct Connect (DC) Transport
	Impact of DC Transport Protocol on Neuron
	Overview of MVAPICH2-X Features
	Existing Intra-Node Communication Mechanism in MPI
	Shared Address-space based Communication
	MPI Level Point-to-Point Latency
	MPI Level Intra-socket Point-to-Point Bandwidth
	MPI Level Inter-Socket Point-to-Point Bandwidth
	Cooperative Rendezvous Protocols
	Overview of MVAPICH2-X Features
	Optimized CMA-based Collectives for Large Messages
	Overview of MVAPICH2-X Features
	Benefits of the New Asynchronous Progress Design: Broadwell + InfiniBand
	Overview of MVAPICH2-X Features
	Shared Address Space (XPMEM)-based Collectives Design
	Reduction Collectives on IBM OpenPOWER
	Application Level Benefits of XPMEM-based Designs
	Impact of XPMEM-based Designs on MiniAMR
	Overview of MVAPICH2-X Features
	Performance of Non-Reduction Collectives with XPMEM
	Overview of MVAPICH2-X Features
	Efficient Zero-copy MPI Datatypes for Emerging Architectures
	Overview of MVAPICH2-X Features
	Impact of Optimized Small Message MPI_Alltoallv Algorithm
	Performance of CNTK with MVAPICH2-X on CPU-based Deep Learning
	Performance of TensorFlow with MVAPICH2-X on CPU
	Overview of MVAPICH2-X Features
	UPC++ Support in MVAPICH2-X
	Application Level Performance with Graph500 and Sort
	MVAPICH2-X-AWS 2.3
	Evolution of networking on AWS
	Amazon Elastic Fabric Adapter (EFA)
	IB Transport Types and Associated Trade-offs
	Scalable Reliable Datagrams (SRD): Features & Limitations
	Verbs level evaluation of EFA performance
	Point-to-Point Performance
	Collective Performance: MPI Scatterv
	Collective Performance: MPI Gatherv
	Collective Performance: MPI Allreduce
	Application Performance
	MVAPICH2 Software Family
	MPI + CUDA - Naive
	MPI + CUDA - Advanced
	GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU
	CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.2 Releases
	MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems
	MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems
	Slide Number 116
	MVAPICH2-GDR 2.3.2
	Overview of MVAPICH2-GDR Features
	Slide Number 119
	Slide Number 120
	Device-to-Device Performance on OpenPOWER (NVLink2 + Volta)
	Tuning GDRCOPY Designs in MVAPICH2-GDR
	Tuning Loopback Designs in MVAPICH2-GDR
	Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR
	Slide Number 125
	Overview of MVAPICH2-GDR Features
	Slide Number 127
	Slide Number 128
	Overview of MVAPICH2-GDR Features
	Slide Number 130
	MPI Datatype support in MVAPICH2
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	MVAPICH2-GDR: Enhanced Derived Datatype
	Overview of MVAPICH2-GDR Features
	Slide Number 138
	Slide Number 139
	Overview of MVAPICH2-GDR Features
	Deep Learning: New Challenges for Runtimes
	Data Parallel Deep Learning and MPI Collectives
	Distributed Training using TensorFlow (TF)
	Scalable TensorFlow using Horovod, MPI, and NCCL
	MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI
	MVAPICH2-GDR vs. NCCL2 – Allreduce Operation
	MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
	MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale
	Distributed Training with TensorFlow and MVAPICH2-GDR
	Distributed Training with TensorFlow and MVAPICH2-GDR
	MVAPICH2 Software Family
	Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)
	Slide Number 153
	MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)
	MVAPICH2 Software Family
	Overview of OSU INAM
	OSU INAM Features
	OSU INAM Features (Cont.)
	OSU Microbenchmarks
	Applications-Level Tuning: Compilation of Best Practices
	Amber: Impact of Tuning Eager Threshold
	MiniAMR: Impact of Tuning Eager Threshold
	SMG2000: Impact of Tuning Transport Protocol
	Neuron: Impact of Tuning Transport Protocol
	HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model
	LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model
	MILC: Impact of User-mode Memory Registration (UMR) based tuning
	HOOMD-blue: Impact of GPUDirect RDMA Based Tuning
	Application Scalability on Skylake and KNL with Omni-Path
	SPEC MPI 2007 Benchmarks: Broadwell + InfiniBand��
	MVAPICH2 – Plans for Exascale
	Commercial Support for MVAPICH2, HiBD, and HiDL Libraries
	Silver ISV Member for the OpenPOWER Consortium
	Funding Acknowledgments
	Personnel Acknowledgments
	Thank You!

