
Performance	Engineering	using	MVAPICH	and	TAU	

Sameer	Shende,	Srinivasan	Ramesh,	Allen	D.	Malony,	Wyatt	Spear,	Kevin	Huck	
University	of	Oregon	

	
MVAPICH	User’s	Group	(MUG)	Meeting	

12:00pm	–	12:30pm,	Tuesday,	August	20,	2019	
Ohio	Supercomputing	Center,	Columbus,	Ohio	

	
	
	

	
	

	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
	

2	

Acknowledgments

•  The MVAPICH2 team The Ohio State University
•  http://mvapich.cse.ohio-state.edu

•  TAU team at the University of Oregon
•  http://tau.uoregon.edu

3	

TAU Performance System®

•  Tuning and Analysis Utilities (25+ year project)
•  Comprehensive performance profiling and tracing

•  Integrated, scalable, flexible, portable
•  Targets all parallel programming/execution paradigms

•  Integrated performance toolkit
•  Instrumentation, measurement, analysis, visualization
•  Widely-ported performance profiling / tracing system
•  Performance data management and data mining
•  Open source (BSD-style license)
•  Uses performance and control variables to interface with MVAPICH2

•  Integrates with application frameworks
•  http://tau.uoregon.edu

4	

Understanding Application Performance using TAU

•  How much time is spent in each application routine and outer loops? Within loops, what is
the contribution of each statement?

•  How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

•  What is the memory usage of the code? When and where is memory allocated/de-
allocated? Are there any memory leaks?

•  What are the I/O characteristics of the code? What is the peak read and write bandwidth of
individual calls, total volume?

•  What is the contribution of each phase of the program? What is the time wasted/spent
waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?

•  How does the application scale? What is the efficiency, runtime breakdown of performance
across different core counts?

•  How can I tune MPI for better performance? What performance and control does
MVAPICH2 export to observe and control its performance?

5	

TAU	Performance	System®	

Parallel performance framework and toolkit
•  Supports all HPC platforms, compilers, runtime system
•  Provides portable instrumentation, measurement, analysis

6	

TAU Instrumentation Approach

Supports both direct and indirect performance observation
•  Direct instrumentation of program (system) code (probes)

•  Instrumentation invokes performance measurement

•  Event measurement: performance data, meta-data, context
•  Indirect mode supports sampling based on periodic timer or hardware performance counter

overflow based interrupts

Support for user-defined events
•  Interval (Start/Stop) events to measure exclusive & inclusive duration

•  Atomic events (Trigger at a single point with data, e.g., heap memory)
•  Measures total, samples, min/max/mean/std. deviation statistics

•  Context events (are atomic events with executing context)
•  Measures above statistics for a given calling path

7

Direct Observation: Events

Event types
•  Interval events (begin/end events)

•  Measures exclusive & inclusive durations between events
•  Metrics monotonically increase

•  Atomic events (trigger with data value)
•  Used to capture performance data state
•  Shows extent of variation of triggered values (min/max/mean)

Code events
•  Routines, classes, templates
•  Statement-level blocks, loops

8

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a =a + 1;

 bar();

 a =a + 1;
 return a;
}

Inclusive and Exclusive Profiles

•  Performance with respect to code regions
•  Exclusive measurements for region only
•  Inclusive measurements includes child regions

9

How	much	data	do	you	want?	

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

10	

Types	of	Performance	Profiles	

Flat	profiles	
•  Metric	(e.g.,	time)	spent	in	an	event	
•  Exclusive/inclusive,	#	of	calls,	child	calls,	…	

Callpath	profiles	
•  Time	spent	along	a	calling	path	(edges	in	callgraph)	
•  “main=>	f1	=>	f2	=>	MPI_Send”	
•  Set	the	TAU_CALLPATH	and	TAU_CALLPATH_DEPTH	environment	variables	

Callsite	profiles	
•  Time	spent	along	in	an	event	at	a	given	source	location	
•  Set	the	TAU_CALLSITE	environment	variable	

Phase	profiles	
•  Flat	profiles	under	a	phase	(nested	phases	allowed)	
•  Default	“main”	phase	
•  Supports	static	or	dynamic	(e.g.	per-iteration)	phases	

11	

Instrumentation	

Source	instrumentation	using	a	preprocessor	
•  Add	timer	start/stop	calls	in	a	copy	of	the	source	code.	
•  Use	Program	Database	Toolkit	(PDT)	for	parsing	source	code.	
•  Requires	recompiling	the	code	using	TAU	shell	scripts	(tau_cc.sh,	tau_f90.sh)	
•  Selective	instrumentation	(filter	file)	can	reduce	runtime	overhead	and		narrow	
instrumentation	focus.		

Compiler-based	instrumentation	
•  Use	system	compiler	to	add	a	special	flag	to	insert	hooks	at	routine	entry/exit.	
•  Requires	recompiling	using	TAU	compiler	scripts	(tau_cc.sh,	tau_f90.sh…)	

Runtime	preloading	of	TAU’s	Dynamic	Shared	Object	(DSO)		
•  No	need	to	recompile	code!	Use	mpirun	tau_exec	./app		with	options.	
•  Requires	dynamic	executable	(link	using	–dynamic	on	Cray	systems).	

Add	hooks	in	the	code	to	perform	measurements	

12	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
	

13	

Overview of the MVAPICH2 Project
High	Performance	open-source	MPI	Library	for	InfiniBand,	Omni-Path,	Ethernet/iWARP,	and	RDMA	over	Converged	Ethernet	(RoCE)	

•  MVAPICH	(MPI-1),	MVAPICH2	(MPI-2.2	and	MPI-3.1),	Started	in	2001,	First	version	available	in	2002	

•  MVAPICH2-X	(MPI	+	PGAS),	Available	since	2011	

•  Support	for	GPGPUs	(MVAPICH2-GDR)	and	MIC	(MVAPICH2-MIC),	Available	since	2014Support	for	GPGPUs		(MVAPICH2-GDR)	and		

•  Support	for	Virtualization	(MVAPICH2-Virt),	Available	since	2015	

•  Support	for	Energy-Awareness	(MVAPICH2-EA),	Available	since	2015	

•  Support	for	InfiniBand	Network	Analysis	and	Monitoring	(OSU	INAM)	since	2015	

•  Used	by	more	than	3,025	organizations	in	89	countries	

•  More	than	562,000	(>	0.5	million)	downloads	from	the	OSU	site	directly	

•  Empowering	many	TOP500	clusters	(Nov	‘18	ranking)	

•  3rd		ranked	10,649,640-core	cluster	(Sunway	TaihuLight)	at		NSC,	Wuxi,	China	

•  5th,	448,448	cores	(Frontera)	at	TACC	

•  8th,	391,680	cores	(ABCI)	in	Japan	

•  15th,	570,020	cores	(Neurion)	in	S.	Korea	and	many	others	

•  Available	with	software	stacks	of	many	vendors	and	Linux	Distros	(RedHat,	SuSE,	and	OpenHPC)	

•  http://mvapich.cse.ohio-state.edu	

Empowering	Top500	systems	for	over	a	decade	 Partner	in	TACC	Frontera	System	

MVAPICH2 and TAU

●  TAU	and	MVAPICH2	are	enhanced	with	the	ability	to	generate	recommendations	and	
engineering	performance	report	

●  MPI	libraries	like	MVAPICH2	are	now	“reconfigurable”	at	runtime	
●  TAU	and	MVAPICH2	communicate	using	the	MPI-T	interface	

15	

Why	PMPI	is	not	good	enough?	

•  Takes	a	“black	box”	view	of	the	MPI	library	
16	

MPI_T	usage	semantics	

Initialize MPI-T

Get #variables

Query Metadata

Allocate Session

Allocate Handle

Read/Write/Reset
Start/Stop var

Free Handle

Finalize MPI-T

Free Session

Allocate Handle

Read/Write var

Free Handle

Performance
Variables

Control
Variables

int	MPI_T_init_thread(int	required,	int	*provided);	int	MPI_T_cvar_get_num(int	*num_cvar);	
int	MPI_T_cvar_get_info(int	cvar_index,	char	*name,	int	*name_len,	int	*verbosity,	

	 	 	MPI_Datatype	*datatype,	MPI_T_enum	*enumtype,	
	 	 	char	*desc,	int	*desc_len,	int	*bind,	int	*scope);	
int	MPI_T_pvar_session_create(MPI_T_pvar_session	*session);	int	MPI_T_pvar_handle_alloc(MPI_T_pvar_session	session,	int	pvar_index,	
	 	void	*obj_handle,	MPI_T_pvar_handle	*handle,	int	*count);	

int	MPI_T_pvar_start(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle);	
int	MPI_T_pvar_read(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle,	void*	buf);	
int	MPI_T_pvar_reset(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle);	

int	MPI_T_pvar_handle_free(MPI_T_pvar_session	session,	MPI_T_pvar_handle	*handle);	int	MPI_T_pvar_session_free(MPI_T_pvar_session	*session);	int	MPI_T_finalize(void);	

17	

MPI_T	support	with	MVAPICH2	

Memory	Usage:	
- 	current	level	

- 	maximum	watermark	

Registration	cache:	
- 	hits	

- 	misses	

Pt-to-pt	messages:	
- 	unexpected	queue	length	
- 	unexp.	match	attempts	

- 	recvq.	length	

Shared-memory:	
- 	limic/	CMA	

- 	buffer	pool	size	&	usage	

Collective	ops:	
- 	comm.	creation	

- 	#algorithm	invocations	
[Bcast	–	8;	Gather	–	10]	

…	

InfiniBand	N/W:	
- 	#control	packets	

- 	#out-of-order	packets	

•  Support	performance	variables	(PVAR)	

•  Variables	to	track	different	components	within	the	MPI	library	

•  Initial	support	for	Control	Variables		(CVAR)	
•  Variables	to	modify	the	behavior	of	MPI	Library	

18	

MPI_T_init_thread(..)	
MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)	
if	(msg_size	<	MV2_EAGER_THRESHOLD	+	1KB)	

	MPI_T_cvar_write(MV2_EAGER_THRESHOLD,	+1024)	
MPI_Send(..)	
MPI_T_finalize(..)	
	

Co-designing	Applications	to	use	MPI-T	

Example	Pseudo-code:	Optimizing	the	eager	limit	dynamically:	

19	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
	

20	

Integrating TAU with MVAPICH2 through MPI_T Interface

●  Enhance	existing	support	for	MPI_T	in	
MVAPICH2	to	expose	a	richer	set	of	
performance	and	control	variables	

●  Get	and	display	MPI	Performance	
Variables	(PVARs)	made	available	by	
the	runtime	in	TAU	

●  Control	the	runtime’s	behavior	via	MPI	
Control	Variables	(CVARs)	

●  Add	support	to	MVAPICH2	and	TAU	for	
interactive	performance	engineering	
sessions	

21	

Three Scenarios for Integration

22	

Scenario 1: Non-interactive mode

Scenario 3: Policy driven mode

Scenario 2: User-interactive mode

TAU	Performance	Measurement	Model	

enter/exit events
are “interval” events (in shared memory)

application-wide
performance data

TAU	Plugin	Architecture	
Extend	TAU	event	interface	for	plugins	

•  Events:	interval,	atomic	
•  Specialized	on	event	ID	
•  Synchronous	operation	

Create	TAU	interface	for	trigger	plugins	
•  Named	trigger	
•  Pass	application	data	
•  Synchronous	
•  Asynchronous	using	agent	plugin	

TAU	Plugin	Architecture	
•  Both	event	and	trigger	plugins	are	synchronous	

•  Directly	called	from	the	application	
•  Execute	inline	with	the	application	
•  Use	an	application’s	thread	of	execution	

•  Consider	utilizing	a	separate	thread	of	execution	to	perform	performance	analysis	
functions	
•  For	instance,	periodic	daemon	to	sample	performace	

•  Design	an	agent	plugin	mechanism	
•  Create	an	execution	thread	to	execute	plugin	
•  Register	plugin	with	this	execution	thread	

TAU	Plugin	Architecture	
•  Parallel	performance	systems	do	not	typically	do	runtime	analytics	when	making	

measurements	
•  Want	to	extend	a	performance	system	with	additional	analytics	functionality	

WITHOUT	building	it	directly	into	the	performance	system	
•  Apply	a	plugin	architecture	approach	

•  Develop	analytics	plugins	(common,	application)	
•  Register	(load)	them	with	the	performance	system	

•  Plugins	have	access	to	performance	data	state	
•  Plugins	can	utilize	the	parallel	execution	context	

Plugin-based Infrastructure for Non-Interactive Tuning

•  TAU	supports	a	fully-customizable	plugin	
infrastructure	based	on	callback	event	handler	
registration	for	salient	states	inside	TAU:	
•  Function	Registration	/	Entry	/	Exit	
•  Phase	Entry	/	Exit	
•  Atomic	Event	Registration	/	Trigger	
•  Init	/	Finalize	Profiling	
•  Interrupt	Handler	
•  MPI_T	

•  Application	can	define	its	own	“trigger”	states	
and	associated	plugins	
•  Pass	arbitrary	data	to	trigger	state	plugins	

27	

TAU	Customization	

28	

•  TAU	states	can	be	named	or	generic	
•  TAU	distinguishes	named	states	in	a	way	that	allows	for	separation	of	

occurrence	of	a	state	from	the	action	associated	with	it	
•  Function	entry	for	“foo”	and	“bar”	represent	distinguishable	states	in	TAU	

•  TAU	maintains	an	internal	map	of	a	list	of	plugins	associated	with	each	state	

TAU	Runtime	Control	of	Plugin	

29	

•  TAU	defines	a	plugin	API	to	deliver	access	control	to	the	internal	
plugin	map	

•  User	can	specify	a	regular	expression	to	control	plugins	executed	
for	a	class	of	named	states	at	runtime	
•  Access	to	map	on	a	process	is	serialized:	application	is	expected	

to	access	map	through	main	thread	

TAU	Phase	Based	Recommendations	

30	

•  MiniAMR:	Benefits	from	hardware	offloading	using	SHArP	
hardware	offload	protocol	supported	by	MVAPICH2	for	
MPI_Allreduce	operation	

•  Recommendation	Plugin:	
•  Registers	callback	for	“Phase	Exit”	event	
•  Monitors	message	size	through	PMPI	interface	
•  If	message	size	is	low	and	execution	time	inside	

MPI_Allreduce	is	significant,	a	recommendation	is	
generated	on	ParaProf	(TAU’s	GUI)	for	the	user	to	set	the	
CVAR	enabling	SHArP	

	

TAU	Per-Phase	Recommendations	in	ParaProf	

31	

Enhancing MPI_T Support
●  Introduced	support	for	new	MPI_T	based	CVARs	to	MVAPICH2	

○  MPIR_CVAR_MAX_INLINE_MSG_SZ	
■  Controls	the	message	size	up	to	which	“inline”	transmission	of	data	is	

supported	by	MVAPICH2	
○  MPIR_CVAR_VBUF_POOL_SIZE		

■  Controls	the	number	of	internal	communication	buffers	(VBUFs)	
MVAPICH2	allocates	initially.	Also,	
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1]	([2…n])	

○  MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE		
■  Controls	the	number	of	VBUFs	MVAPICH2	allocates	when	there	are	no	

more	free	VBUFs	available	
○  MPIR_CVAR_IBA_EAGER_THRESHOLD	

■  Controls	the	message	size	where	MVAPICH2	switches	from	eager	to	
rendezvous	protocol	for	large	messages	

●  TAU	enhanced	with	support	for	setting	MPI_T	CVARs	in	a	non-interactive	
mode	for	uninstrumented	applications	

32	

MVAPICH2

●  Several	new	MPI_T	based	PVARs	added	to	MVAPICH2	
○  mv2_vbuf_max_use,	mv2_total_vbuf_memory	etc	

●  Enhanced	TAU	with	support	for		tracking	of	MPI_T	PVARs	and	CVARs	for	
uninstrumented	applications	
○  ParaProf,	TAU’s	visualization	front	end,		enhanced	with	support	for	

displaying	PVARs	and	CVARs	
○  TAU	provides	tau_exec,	a	tool	to	transparently	instrument	MPI	routines	

○  Uninstrumented:		
%	mpirun	–np	1024	./a.out	

○  Instrumented:	
–  %	export	TAU_TRACK_MPI_T_PVARS=1	
–  %	export	TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE	
–  %	export	TAU_MPI_T_CVAR_VALUES=16	
–  %	mpirun	-np	1024	tau_exec	-T	mvapich2,mpit		./a.out	

	

33	

PVARs Exposed by MVAPICH2

34	

CVARs Exposed by MVAPICH2

35	

Using MVAPICH2 and TAU with Multiple CVARs

●  To	set	CVARs	or	read	PVARs	using	TAU	for	an	uninstrumented	binary:	
%	export	TAU_TRACK_MPI_T_PVARS=1	
%	export	TAU_MPI_T_CVAR_METRICS=	

	MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],		
	MPIR_CVAR_IBA_EAGER_THRESHOLD	

%	export	TAU_MPI_T_CVAR_VALUES=32,64000	
%	export	PATH=/path/to/tau/x86_64/bin:$PATH	
%	mpirun	-np	1024	tau_exec	-T	mvapich2,mpit			./a.out	
%	paraprof		

36	

VBUF usage without CVARs

37	

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

38	

VBUF Memory Usage Without CVAR

39	

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

40	

TAU: Extending Control Variables on a Per-Communicator Basis

•  Based	on	named	communicators	(MPI_Comm_set_name)	in	an	application,	
TAU	allows	a	user	to	specify	triples	to	set	MPI_T	cvars	for	each	communicator:	
•  Communicator	name	
•  MPI_T	CVAR	name	
•  MPI_T	CVAR	value	

•  %	./configure	–mpit	–mpi	–c++=mpicxx	–cc=mpicc	–fortran=mpif90	…	
•  %	make	install	
•  %	export	TAU_MPI_T_COMM_METRIC_VALUES=<comm,	cvar,	value>,…	
•  %	mpirun	–np	64	tau_exec	–T	mpit				./a.out		
•  %	paraprof		

41	

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM
bash-4.2$	TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT,

2097152,COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384	MV2_USE_CUDA=1	mpirun	-np	8	tau_exec	-ebs	-T	mvapich2,mpit,cuda9,cupti,communicators,gnu	-cupti	./
comb	-comm	post_recv	wait_all	-comm	post_send	wait_all	-comm	wait_recv	wait_all	-comm	wait_send	wait_all	200_200_200	-divide	2_2_2	-periodic	1_1_1	-ghost	1_1_1	-vars	3	-cycles	100	-
comm	cutoff	250	-omp_threads	1	

Started	rank	0	of	8	
Node	lassen710	
Compiler	COMB_COMPILER	
Cuda	compiler	COMB_CUDA_COMPILER	
GPU	0	visible	undefined	
Not	built	with	openmp,	ignoring	-omp_threads	1.	
Cart coords 0 0 0	

Message	policy	cutoff	250	
Post	Recv	using	wait_all	method	
Post	Send	using	wait_all	method	
Wait	Recv	using	wait_all	method	
Wait	Send	using	wait_all	method	
Num	cycles								100	
Num vars 3	

ghost_widths								1								1								1	
sizes 200 200 200	

divisions											2								2								2	
periodic 1 1 1	

division	map	
map 0 0 0	

map 100 100 100	

map 200 200 200	

Starting	test	memcpy	seq	dst	Host	src	Host	
Starting	test	Comm	mock	Mesh	seq	Host	Buffers	seq	Host	seq	Host	
Starting	test	Comm	mpi	Mesh	seq	Host	Buffers	seq	Host	seq	Host	

42	

Default With MPI_T CVARs

COMB Profile

43	

CVARs Exposed by MVAPICH2

44	

TAU‘s	ParaProf	3D	Browser	

45	

Download	TAU	from	U.	Oregon	

http://tau.uoregon.edu	
http://taucommander.com		

http://www.hpclinux.com		[OVA	for	VirtualBox]	
https://e4s.io		[Extreme-Scale	Scientific	Software	Stack,	

Containers	for	HPC]	
for	more	information	

Free	download,	open	source,	BSD	license	
	

PRL, OACISS, University of Oregon, Eugene

www.uoregon.edu

47	

US Department of Energy (DOE)
•  ANL
•  Office of Science contracts, ECP
•  SciDAC, LBL contracts
•  LLNL-LANL-SNL ASC/NNSA contract
•  Battelle, PNNL and ORNL contract

Department of Defense (DoD)
•  PETTT, HPCMP

National Science Foundation (NSF)
•  SI2-SSI, Glassbox

NASA
CEA, France
Partners:

• University of Oregon
• The Ohio State University
• ParaTools, Inc.
• University of Tennessee, Knoxville
• T.U. Dresden, GWT
• Jülich Supercomputing Center

Support	Acknowledgements	

Acknowledgment	

“This	research	was	supported	by	the	Exascale	Computing	Project	(17-SC-20-SC),	a	collaborative	effort	of	
two	U.S.	Department	of	Energy	organizations	(Office	of	Science	and	the	National	Nuclear	Security	
Administration)	responsible	for	the	planning	and	preparation	of	a	capable	exascale	ecosystem,	

including	software,	applications,	hardware,	advanced	system	engineering,	and	early	testbed	platforms,	
in	support	of	the	nation’s	exascale	computing	imperative.”	

	

49	

