
Sayantan Sur, Intel

Presenting work done by Arun Ilango, Dmitry Gladkov, Dmitry Durnov and
Sean Hefty and others in the OFIWG community

6th Annual MVAPICH User Group (MUG) 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

MUG '18

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Open Fabric Interfaces

MUG '18

Optimized SW path to HW

• Minimize cache and memory footprint

• Reduce instruction count

• Minimize memory accesses

Scalable
Implementation

Agnostic

Software interfaces aligned with
user requirements

• Careful requirement analysis

Inclusive development effort

• App and HW developers

Good impedance match with multiple
fabric hardware

• InfiniBand, iWarp, RoCE, raw Ethernet, UDP
offload, Omni-Path, GNI, BGQ, …

• Works on Linux, Windows and MacOS

Open Source User-Centric

Open Fabric

Interfaces

User-centric interfaces lead to

innovation and adoption

OFI – State of the Union

MUG '18

OFI

Intel® MPI
Library

MPICH* Open MPI* GASNet*

libfabric Enabled Middleware

Advanced application oriented semantics

Tag Matching
Scalable
memory

registration

Triggered
Operations

Multi-
Receive
buffers

Sockets
TCP, UDP

Verbs
Cisco

usNIC*

Intel
OPA PSM

Cray
GNI* Mellanox* IBM Blue

Gene*

Exciting new
providers in

development!

®

Reliable Datagram Endpoints

Remote
Completion
Semantics

Streaming Endpoints

Shared
Address
Vectors

Unexpected
Message
Buffering

Intel® MLSL#

Exploration

OFI Insulates applications

from wide diversity of fabrics

underneath

* Other names and brands may be claimed as property of others

Sandia
SHMEM*

NetIO*Charm++*

OFI Implementation Update

MUG '18

1.5 API Updates
• RxM provider
• SOCK endpoint types
• Memory registration
• API optimizations

1.6 Provider Enhancements
• PSM2 – native
• RxM performance
• SHM – shared memory support
• Persistent memory

1.7 Predictions
• New providers

• RxD, multi-rail, new vendors
• SHM – xpmem support
• API enhancements

 OFI Provider Infrastructure
 OFI API Exploration
 Companion APIs (Bonus!)

2017 v1.4.0.. ..1.4.2 v1.5.0.. ..1.5.3

2018 v1.6.0.. v1.6.1 v1.6.2 v1.7.0

Provider Infrastructure Updates

MUG '18

RXM – Reliable Datagrams over Connections

MUG '18

MPI / SHMEM

RxM
RDM

MSG MSG MSG MSG

MSG

RDM

MSG

RDM

MSG

RDM

MSG

RDM

Verbs

NetworkDirect

TCP

OFI

OFI
Primary path for HPC apps

accessing verbs hardware

Optimizes for

hardware features

 Strong MPI performance

 Evaluating tighter provider
coupling

Connection

multiplexing

TCP will replace

sockets

MPI Critical Path Software overhead Analysis

MUG '18

Rank 0 Rank 1

MPI_Send

MPI + Fabric Code path

Verbs
Ping

MPI_Recv

Posting Recv and Waiting

Fabric Code + MPI path

Verbs

Pong

Measured
Overhead

Measured
Overhead

Discovery of message

Gains in total code path primarily
coming from combination MPICH-CH4
and OFI RXM provider

Instruction counts are an indirect
measure help us gauge semantic fit

Ongoing optimization

• Aiming to reduce send path to
about 250 instructions, and receive
path to 450-480 instructions

Similar optimizations are possible in
MVAPICH

MPI Critical path software overhead

MUG '18

361 364
313

844
907

625

0

200

400

600

800

1000

MVAPICH (RDMA

Fast Path)

MVAPICH (SRQ) MPICH-CH4-OFI

(SRQ)

N
u

m
b

e
r

o
f

In
st

ru
ct

io
n

s

Critical SW Code Path for Ping

Pong Test

Send Recv

MVAPICH 2.3 (default configuration)
GCC 4.8.5, OFI master (@585919d)
-O3, -DNDEBUG

Platform:

Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4]
intel_pstate on/turbo on
RHEL 7.4
mlnx1-OFED.4.3.0.2.1.43101.x86_64

Run details:

$ mpirun -hosts nnlmpibdw01,nnlmpibdw02 -n 2 -ppn 1 numactl
--physcpubind=7 osu_latency -i 40000

$ FI_OFI_RXM_SAR_LIMIT=8192
FI_VERBS_MR_CACHE_ENABLE=1 mpirun -hosts
nnlmpibdw01,nnlmpibdw02 -n 2 -ppn 1 numactl --
physcpubind=7 osu_latency -i 40000

MPI Performance Analysis - Latency

MUG '18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Message Size (Bytes)

OSU Latency (Relative Performance)

MVAPICH2-2.3 IMPI 2019 Beta U1 (OFI Master)

Lower is better

MPI Performance Analysis – Message Rate

MUG '18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K 2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

2
M

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Message Size (Bytes)

OSU Messaging Rate (Relative Performance)

MVAPICH2-2.3 IMPI 2019 Beta U1 (OFI Master)

Platform:

Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4]
intel_pstate on/turbo on
RHEL 7.4
mlnx1-OFED.4.3.0.2.1.43101.x86_64

Run details:

$ mpirun -hosts nnlmpibdw01,nnlmpibdw02 -n 2 -ppn 1 numactl
--physcpubind=7 osu_mbw_mr

$ FI_OFI_RXM_SAR_LIMIT=8192
FI_VERBS_MR_CACHE_ENABLE=1 mpirun -hosts
nnlmpibdw01,nnlmpibdw02 -n 2 -ppn 1 numactl --
physcpubind=7 osu_mbw_mr

Higher is better

RXD – Reliable Datagram over Unreliable Datagram

MUG '18

MPI / SHMEM

RxD RDM

DGRAM DGRAM

DGRAM

RDM

Verbs UD

usNIC

Raw Ethernet

OFI

OFI
HPC scalability

 Re-designing for performance and
scalability

 Analyzing provider specific
optimizationsReliability, segmentation, and

reassembly

UDP

Other..?

Fast development

path for hardware

support

DGRAM

RDM

DGRAM

RDM

DGRAM

RDM

Extend features of

simple RDM provider
Offload large transfers

Shared Memory Provider

MUG '18

Version
Flags
PID
Region Size
Lock

Command Queue

Response Queue

Peer Address Map

Inject Buffers

SHM Provider

SMR

Shared Memory
Region

SMR SMR

Shared memory

primitives

One-sided and

two-sided transfers

CMA (cross-memory attach)

for large transfers

xpmem support under

development

Single command

queue

Memory Monitor and Registration Cache

MUG '18

Notification
Queue

Notification
Queue

Notification
Queue

Memory
Monitor Core

Monitor
‘Plug-in’

MR Map

MR MR MR

Registration Cache
LRU List

Custom Limits
Usage Stats

Provider

Merges overlapping

regions

events

subscribe

Driver notification, hook

alloc/free, provider specific

Tracks active

usage

Internal
API

Get/put MRs

Callbacks to

add/delete MRs

A generic solution is

desired here

Performance Monitoring

MUG '18

Performance Data Set

Performance
Management Unit

CPU

Cache

NIC

Event Data
Count
Sum

Event Data
Count
Sum

Event Data
Count
Sum

Cycles
Instructions

Hits
Misses

Performance
‘domains’

?
Inline performance

tracking

Linux RDPMCEx: Sample CPU instructions
for various code paths

Hooking Provider

MUG '18

Hook
Zero-impact

unless enabled

User

OFI

Core/Util Provider

OFI Core

Always available –
release and debug builds

Intercept calls
to any provider

Debugging, performance analysis,
feature enhancements, testing

Multi-rail provider

MUG '18

User

mRail
EP

EP 1 EP 2

EP 1

RDM

OFI

OFI

Active

EP 2

Standby

Application or
admin configured

Increase bandwidth
and message rate

Failover

Rail selection
‘plug-in’

Require variable
message support

EP 1

RDM

EP 2

Multiple EPs,
ports, NICs, fabrics

Isolate rail
selection algorithm

One fi_info
structure per rail

TBD: recovery
fallback

API Exploration

MUG '18

Persistent Memory

MUG '18

User

Commit complete

RMA
Write

Persistent
Memory

User

Register
PMEM

PMEM MR

§ Keep implementation agnostic

• Handle offload and on-load models

• Support multi-rail

• Minimize state footprint

Evolve APIs to support
other usage models

New completion
semantic

§ Exploration

• Byte addressable or object aware

• Single or multi-transfer commit

• Advanced operations (e.g. atomics)

Work with SNIA (Storage
Networking Industry Association)

Data Domains

MUG '18

CPU Memory PMEM

(Smart) NICPeer Device

FPGA
Device

Memory
Device

Memory

APIs assume memory
mapped regions

May not want to
write data through

CPU caches

Memory regions
may not be mapped

Results may be cached by
NIC for long transactions

CPU load/stores

Same coherency
domain

Programmable
offload capabilities

and flow processing

May need to sync
results with CPU

Variable Length Messages

MUG '18

User User

send receive

size = X

size = ?

X

§ Eager messageà ßrendezvousà
• RMA read or tagged message

§ MTUà ßack remaining transferà
• RMA write, tagged send, send

§ RTSà ßCLS transferà

Similar wire protocols –
different implementations

Size unknown until sent

X > transport msg size

Software layers
duplicate feature

Variable Length Messages (continued)

MUG '18

User User

send
Claim/
Discard

size = XID ID + X

Report ready to
receive completion

§ Modeled after tagged message feature

§ Opt-in –impacts protocol

§ Provider optimizes around hardware abilities

§ Opportunity: report discard to sender
• Application flow control and load balancing

• Dynamically disable receive processing (e.g. EBUSY)

Only lowest layer developer needs to
figure out how to spell rendezvous!No change at

sender… maybe

Companion APIs

MUG '18

C++ Standardization

MUG '18

User Program

IO Service

(tracks and progresses requests)

Async Handler – e.g. connect

Async Handler – e.g. transmits

IO Object

e.g. resolver

IO Object

e.g. socket

Feedback from C++ community
• Implement proposal
• Detail alternatives
• Justify extensions

Proposal
• Extend ASIO
• Implement over libfabric

ASIO Model

Callback
driven

Maps to all OFI asynchronous
reporting objects

Add support for fabrics

directly to the C++ language

Rsockets

MUG '18

Verbs

Verbs

OFI

Significantly boosts
performance versus sockets

with HW acceleration

rsockets
(librdmacm)

RDMA CM

rsockets
(librsockets)

RC QP

UD QP

SOCK
DGRAM EP

SOCK
STREAM EP

Omni Path
SOCK

DGRAM EP

SOCK
STREAM EP

TCP

SOCK
STREAM EP

UDP
SOCK

DGRAM EP

Network
Direct

SOCK
STREAM EP

Increase OS &
fabric portability

Pursuing OpenJDK
integration

Always available

Summary

Significant software work ongoing to implement full set of OFI features on
Fabric providers that lack native support

Components developed are generic and re-usable across Fabrics

Fabric vendors can implement subset of features and get access to wide OFI
software ecosystem by leveraging utility components

As newer features are added to OFI, provide a pathway to quickly enable those
features in older providers – applications can track latest OFI APIs

Participation in OFIWG is free, simple, no associations or boards to join

MUG '18

http://libfabric.org

http://libfabric.org/

