
© 2017 Arm Limited

MVAPICH User Group Meeting 2018
Columbus, OH

HPC Network
Stack Update

Pavel Shamis/Pasha, Principal Research
Engineer

© 2017 Arm Limited

RDMA Update

© 2017 Arm Limited 3

VERBs API on Arm

• Besides bug fixes not much work was required

• Mellanox OFED 2.4 and above supports Arm

• Linux Kernel 4.5.0 and above (maybe even earlier)

• Linux Distribution Support – on going process

• OFED – no official ARMv8 support

© 2017 Arm Limited 4

OpenUCX

WWW.OPENUCX.ORG
https://github.com/openucx/ucx

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities Data
stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications
UC

X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

http://www.openucx.org/
https://github.com/openucx/ucx

© 2017 Arm Limited 5

UCX 1.3: https://github.com/openucx/ucx/releases/tag/v1.3.0

• Multi-rail support for eager and rendezvous protocols

• Added stream-based communication API

• Added support for GPU platforms: Nvidia CUDA and AMD ROCM software
stacks

• Added API for Client-Server based connection establishment

• Added support for TCP transport (Send/Receive semantics)

• Support for InfiniBand hardware tag-matching for DC and accelerated
transports

• Added support for tag-matching communications with CUDA buffers

• Initial support for Java bindings

• Progress engine optimizations

• Improved scalability of software tag-matching by using a hash table

• Added transparent huge-pages allocator

• Added non-blocking flush and disconnect semantics

• Added registration cache for KNEM

https://github.com/openucx/ucx/releases/tag/v1.3.0

© 2017 Arm Limited 6

UCX Roadmap
v1.5 – November 2018
• Bugfixes and optimizations

• Active Message API

• New Client-Server API

• Full functionality over TCP

• Full functionality over legacy RDMA devices

• Full functionality over uGNI API

V2.0 – 2019
• Updated API – not backward compatible with 1.x

• Binary distribution will provide v1.x version of the
library (in addition for 2.x) for backward compatibility

– All codes should work as it is

v1.4 – end of July August
• Bitwise atomics support

• Improvements for message injection (medium
message size)

• Client/server connection establishment to
support large address

• Support multiple connections between same
pair of endpoints

• CUDA-IPC support

© 2017 Arm Limited

MPI

© 2017 Arm Limited 8

Scaling

© 2017 Arm Limited 9

Programing models

MVAPICH 2.3 – works on ARMv8
MPICH 3.3b – works on ARMv8
Open MPI 3.x – works on ARMv8
OSHMEM – work on ARMv8

© 2017 Arm Limited 10

HPE Comanche (Apollo 70) with Cavium Thunder X2 SINGLE core,
Mellanox ConnextX-4 100Gb/s (EDR) - Bandwidth

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384
32768

65536

131072

262144

524288

1048576

2097152

4194304

M
B/

s

Message Size

MPI Bandwidth

Hi
gh

er
 is

 b
et

te
r

© 2017 Arm Limited 11

0

1

2

3

4

5

6

7

8

9

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
icr

o-
Se

co
nd

Message Size

MPI Latency

HPE Comanche (Apollo 70) with Cavium Thunder X2, Mellanox
ConnectX-4 100Gb/s (EDR) – Latency/Ping Pong

Low
er is better

© 2017 Arm Limited 12

HPE Comanche (Apollo 70) with Cavium Thunder X2, Mellanox
ConnectX-4 100Gb/s (EDR) – MPI Message Rate (28 cores)

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384
32768

65536

131072

262144

524288

1048576

2097152

4194304

M
es

sa
ge

 P
er

 S
ec

on
d

M
ill

io
ns

Message Size

MPI Message Rate

Hi
gh

er
 is

 b
et

te
r

© 2017 Arm Limited

MVAPICH Update

© 2017 Arm Limited 14

Building with Arm compiler

Example:
my_cc=armclang

my_cxx=armclang++

my_fc=armflang

../configure CC=${my_cc} CXX=${my_cxx} F77=${my_fc} FC=${my_fc} --prefix=$INSTALL_DIR --with-
device=ch3:mrail --with-rdma=gen2 --enable-cxx --enable-fc

Post configure fix for libtool (it does not get the right flags for armflang):
sed -i -e 's#wl=""#wl="-Wl,"#g' libtool

sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Arm Allinea Studio 18.4 release is now available on developer.arm.com

https://developer.arm.com/products/software-development-tools/hpc/arm-allinea-studio/download
https://developer.arm.com/products/software-development-tools/hpc/arm-allinea-studio/download

© 2017 Arm Limited 15

Weakly Ordered Memory Model

Weakly ordered memory access means that changes to memory can be applied in any
order as long as single-core execution sees the data needed for program correctness

Benefits:
• The processor can make many optimizations to reduce memory access

– This has power (pushing bits is expensive) and memory bandwidth benefits

• The optimizations are transparent to single-core execution

Challenges:
• Synchronization of data between cores must be explicit

• Popular legacy architectures (EG: x86_64, x86) provide “almost” strongly ordered memory access

– This means that existing multi-core codes may be dependent on strongly ordered accesses

© 2017 Arm Limited 16

Memory Barriers on Arm

Memory Barriers
• Multithread environment

• Software-hardware interaction

• Examples https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L25

• You can “fish” for these bugs in MPI implementations around Eager-RDMA and shared memory protocols

Write Payload

Write Notify

Busy-wait Read Notify

Read Payload

Write Barrier – DMB ISHST Read Barrier – DMB ISHLD

RDMA

Maranget, Luc, Susmit Sarkar, and Peter Sewell. "A tutorial introduction to the Arm and POWER relaxed memory models." Draft
available from http://www. cl. cam. ac. uk/~ pes20/ppc-supplemental/test7. pdf (2012).

https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h

© 2017 Arm Limited 17

Memory barrier example:

DMB ISHST

DMB ISHLD

© 2017 Arm Limited 18

OSU MVAPICH BCAST (448 processes)

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

La
te

nc
y

(m
icr

o
se

co
nd

s)

Message Size (Bytes)

Bcast without slot Bcast with slot

© 2017 Arm Limited 19

OSU MVAPICH Barrier (448 processes)

0

50

100

150

200

250

Slot Enabled Slot Disabled

La
te

nc
y

(m
icr

o
se

co
nd

s)

© 2017 Arm Limited 20

HPCAC - http://hpcadvisorycouncil.com/

2121 © 2017 Arm Limited

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

2222

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!
감사합니다
ध"यवाद

© 2017 Arm Limited

© 2017 Arm Limited 23

Backup

