HPC Network Stack Update

Pavel Shamis/Pasha, Principal Research

Engineer

MVAPICH User Group Meeting 2018 Columbus, OH

RDMA Update

© 2017 Arm Limited

VERBs API on Arm

- Besides bug fixes not much work was required
- Mellanox OFED 2.4 and above supports Arm
- Linux Kernel 4.5.0 and above (maybe even earlier)
- Linux Distribution Support on going process
- OFED no official ARMv8 support

OpenUCX

WWW.OPENUCX.ORG

https://github.com/openucx/ucx

arm

UCX 1.3: https://github.com/openucx/ucx/releases/tag/v1.3.0

- Multi-rail support for eager and rendezvous protocols
- Added stream-based communication API
- Added support for GPU platforms: Nvidia CUDA and AMD ROCM software stacks
- Added API for Client-Server based connection establishment
- Added support for TCP transport (Send/Receive semantics)
- Support for InfiniBand hardware tag-matching for DC and accelerated transports
- Added support for tag-matching communications with CUDA buffers
- Initial support for Java bindings
- Progress engine optimizations
- Improved scalability of software tag-matching by using a hash table
- Added transparent huge-pages allocator
- Added non-blocking flush and disconnect semantics
- Added registration cache for KNEM
- 5 © 2017 Arm Limited

UCX Roadmap

v1.4 – end of July August

- Bitwise atomics support
- Improvements for message injection (medium message size)
- Client/server connection establishment to support large address
- Support multiple connections between same pair of endpoints
- CUDA-IPC support

v1.5 – November 2018

- Bugfixes and optimizations
- Active Message API
- New Client-Server API
- Full functionality over TCP
- Full functionality over legacy RDMA devices
- Full functionality over uGNI API
- V2.0-2019
 - Updated API not backward compatible with 1.x
 - Binary distribution will provide v1.x version of the library (in addition for 2.x) for backward compatibility
 - All codes should work as it is

MPI

© 2017 Arm Limited

Scaling

•

CAVIUM

THUNDERX

penMP

University of BRISTOL GW4 January 17th 2017 Announcing the GW4 Tier 2 HPC service, 'Isambard': named after Isambard Kingdom Brunel System specs: Cray CS-400 system • 10,000+ ARMv8 cores · HPC optimised software stack · Technology comparison: • x86, KNL, Pascal To be installed March-Dec 2017 • £4.7m total project cost over 3 years McIntosh Smith, simonm@cs.bris.ac.uk, Sandia's NNSA/ASC ARM Platforms = 2015 = 2017 = 2018

GCC

8 © 2017 Arm Limited

Programing models

MVAPICH 2.3 – works on ARMv8

MPICH 3.3b – works on ARMv8

Open MPI 3.x – works on ARMv8

OSHMEM – work on ARMv8

HPE Comanche (Apollo 70) with Cavium Thunder X2 SINGLE core, Mellanox ConnextX-4 100Gb/s (EDR) - Bandwidth

Message Size

HPE Comanche (Apollo 70) with Cavium Thunder X2, Mellanox ConnectX-4 100Gb/s (EDR) – Latency/Ping Pong

HPE Comanche (Apollo 70) with Cavium Thunder X2, Mellanox ConnectX-4 100Gb/s (EDR) – MPI Message Rate (28 cores)

Message Size

MVAPICH Update

© 2017 Arm Limited

Building with Arm compiler

Example:

my_cc=armclang

my_cxx=armclang++

my_fc=armflang

../configure CC=\${my_cc} CXX=\${my_cxx} F77=\${my_fc} FC=\${my_fc} --prefix=\$INSTALL_DIR --withdevice=ch3:mrail --with-rdma=gen2 --enable-cxx --enable-fc

Post configure fix for libtool (it does not get the right flags for armflang):

sed -i -e 's#wl=""#wl="-Wl,"#g' libtool

sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Arm Allinea Studio 18.4 release is now available on developer.arm.com

Weakly Ordered Memory Model

Weakly ordered memory access means that changes to memory can be applied in any order as long as *single-core* execution sees the data needed for program correctness

Benefits:

- The processor can make many optimizations to reduce memory access
 - This has power (pushing bits is expensive) and memory bandwidth benefits
- The optimizations are transparent to single-core execution

Challenges:

- Synchronization of data between cores must be explicit
- Popular legacy architectures (EG: x86_64, x86) provide "almost" strongly ordered memory access
 - This means that existing multi-core codes may be dependent on strongly ordered accesses

Memory Barriers on Arm

Memory Barriers

- Multithread environment
- Software-hardware interaction
- Examples <u>https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L25</u>
- You can "fish" for these bugs in MPI implementations around Eager-RDMA and shared memory protocols

Maranget, Luc, Susmit Sarkar, and Peter Sewell. "A tutorial introduction to the Arm and POWER relaxed memory models." Draft available from http://www. cl. cam. ac. uk/~ pes20/ppc-supplemental/test7. pdf (2012).

Memory barrier example:

11 (1S_CXX_UOD) 1

(*MPIR_Process.cxx_call_op_fn) (

QQ -3723,6 +3730,7 QQ void mv2_shm_tree_reduce(shmem_info_t * shmem, char *in_buf, int len,

(*uop) (shmem->queue[i].shm slots[rindex]->buf, buf, &count, &datatype);

OSU MVAPICH BCAST (448 processes)

OSU MVAPICH Barrier (448 processes)

HPCAC - http://hpcadvisorycouncil.com/

Juno

1x GIGABYTE R270-T64 Chassis

- 2 x Cavium ThunderX 48-core ARM processors
- Memory: 64GB DDR4 2400 MHz
- Mellanox ConnectX-4 EDR 100Gb/s InfiniBand/VPI adapter
- SSD 480GB SATA 3
- 2x GIGABYTE MT30-GS0 Chassis
 - 1x Cavium ThunderX 32-core ARM Processor
 - Memory: 128GB DDR4 2400 MHz
- Mellanox ConnectX-5 EDR 100Gb/s InfiniBand/VPI adapter
- SSD 1TB SATA 3

Switch : Mellanox Switch-IB 2 SB7800 36-Port 100Gb/s EDR

InfiniBand switches

Apply for System Access

arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Thank You! Danke! Merci! 谢谢! ありがとう! **Gracias!** Kiitos! 감사합니다 धन्यवाद

arm

