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• Cloud Computing widely adopted in industry computing environment

• Cloud Computing provides high resource utilization and flexibility

• Virtualization is the key technology to enable Cloud Computing

• Intersect360 study shows cloud is the fastest growing class of HPC

• HPC Meets Cloud: The convergence of Cloud Computing and HPC

HPC Meets Cloud Computing
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• IDC expects that by 2019, HPC ecosystem revenue will jump to a record $30.2 billion. IDC 
foresees public clouds, and especially custom public clouds, supporting an increasing 
proportion of the aggregate HPC workload as these cloud facilities grow more capable and 
mature (Courtesy: http://www.idc.com/getdoc.jsp?containerId=247846)

• Combining HPC with Cloud is still facing challenges because of the performance overhead 
associated virtualization support

– Lower performance of virtualized I/O devices

• HPC Cloud Examples
– Amazon EC2 with Enhanced Networking

• Using Single Root I/O Virtualization (SR-IOV)
• Higher performance (packets per second), lower latency, and lower jitter

• 10 GigE

– NSF Chameleon Cloud

HPC Cloud - Combining HPC with Cloud
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• Overview of Cloud Computing System Software
• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager

• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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Virtualization Technology (Hypervisor vs. Container)

• Provides abstractions of multiple virtual resources by utilizing an intermediate 
software layer on top of the underlying system
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Container-based Virtualization

• Hypervisor provides a full abstraction of 
VM

• Full virtualization, different guest OS, 
better isolation

• Larger overhead due to heavy stack 

• Share host kernel

• Allows execution of isolated user space 
instance

• Lightweight, portability

• Not strong isolation
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• A full virtualization solution for Linux on x86 
hardware that contains virtualization 
extensions (Intel VT or AMD-V)

• The KVM module creates a bare metal 
hypervisor on the Linux kernel

• KVM hosts the virtual machine images as 
regular Linux processes

• Each virtual machine image can use all of the 

features of the Linux kernel, including 
hardware, security, storage, etc.

Overview of Kernel-based Virtual Machine (KVM)

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaat/liaatkvmover.htm
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Container Technology - Docker

• Inherit advantages of container 
technique

• Active community contribution

• Root owned daemon process

• Root escalation in Docker 
container

• Non-negligible performance 

overhead
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• Reproducible software stacks

– Easily verify via checksum or cryptographic signature 

• Mobility of compute

– Able to transfer (and store) containers via standard data mobility tools 

• Compatibility with complicated architectures

– Runtime immediately compatible with existing HPC architecture

• Security model 

– Support untrusted users running untrusted containers

http://singularity.lbl.gov/about

Singularity Overview
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Container Technology (Docker vs. Singularity)

• Singularity aims to provide reproducible and 
mobile environments across HPC centers

• NO root owned daemon

• NO root escalation

• mpirun_rsh –np 2 –hostfile htfiles singualrity exec 
/tmp/Centos-7.img /usr/bin/osu_latency
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• Overview of Cloud Computing System Software

• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager

• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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Drivers of Modern HPC Cluster and Cloud Architecture

• Multi-core/many-core technologies, Accelerators

• Large memory nodes

• Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Single Root I/O Virtualization (SR-IOV)

High Performance Interconnects –

InfiniBand (with SR-IOV)
<1usec latency, 200Gbps Bandwidth>

Multi-/Many-core 

Processors

SSDs, Object Storage 

Clusters

Large memory nodes
(Upto 2 TB)

Cloud CloudSDSC Comet TACC Stampede
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• Advanced Interconnects and RDMA protocols

– InfiniBand (up to 200 Gbps, HDR)

– 10/40/100 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Omni-Path

• Delivering excellent performance (Latency, Bandwidth and CPU Utilization)

• Has influenced re-designs of enhanced HPC middleware

– Message Passing Interface (MPI) and PGAS

– Parallel File Systems (Lustre, GPFS, ..)

• Paving the way to the wide utilization in HPC Cloud with virtualization support 
(SR-IOV)

Trends in High-Performance Networking Technologies
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• Introduced in Oct 2000
• High Performance Data Transfer

– Interprocessor communication and I/O
– Low latency (<1.0 microsec), High bandwidth (up to 25 GigaBytes/sec -> 200Gbps), and 

low CPU utilization (5-10%)
• Flexibility for LAN and WAN communication
• Multiple Transport Services

– Reliable Connection (RC), Unreliable Connection (UC), Reliable Datagram (RD), Unreliable 
Datagram (UD), and Raw Datagram

– Provides flexibility to develop upper layers
• Multiple Operations

– Send/Recv
– RDMA Read/Write
– Atomic Operations (very unique)

• high performance and scalable implementations of distributed locks, semaphores, collective 
communication operations 

• Leading to big changes in designing HPC clusters, file systems, cloud computing 
systems, grid computing systems, …. 

Open Standard InfiniBand Networking Technology
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• Single Root I/O Virtualization (SR-IOV) is providing new opportunities to design 

HPC cloud with very little low overhead

Single Root I/O Virtualization (SR-IOV)

• Allows a single physical device, or a 

Physical Function (PF), to present itself as 
multiple virtual devices, or Virtual 
Functions (VFs)

• VFs are designed based on the existing 
non-virtualized PFs, no need for driver 

change

• Each VF can be dedicated to a single VM 
through PCI pass-through

• Work with 10/40 GigE and InfiniBand

4. Performance comparisons between IVShmem backed and native mode MPI li-
braries, using HPC applications

The evaluation results indicate that IVShmem can improve point to point and collective
operations by up to 193% and 91%, respectively. The application execution time can be
decreased by up to 96%, compared to SR-IOV. The results further show that IVShmem
just brings small overheads, compared with native environment.

The rest of the paper is organized as follows. Section 2 provides an overview of
IVShmem, SR-IOV, and InfiniBand. Section 3 describes our prototype design and eval-
uation methodology. Section 4 presents the performance analysis results using micro-
benchmarks and applications, scalability results, and comparison with native mode. We
discuss the related work in Section 5, and conclude in Section 6.

2 Background
Inter-VM Shared Memory (IVShmem) (e.g. Nahanni) [15] provides zero-copy access
to data on shared memory of co-resident VMs on KVM platform. IVShmem is designed
and implemented mainly in system calls layer and its interfaces are visible to user space
applications as well. As shown in Figure 2(a), IVShmem contains three components:
the guest kernel driver, the modified QEMU supporting PCI device, and the POSIX
shared memory region on the host OS. The shared memory region is allocated by host
POSIX operations and mapped to QEMU process address space. The mapped memory
in QEMU can be used by guest applications by being remapped to user space in guest
VMs. Evaluation results illustrate that both micro-benchmarks and HPC applications
can achieve better performance with IVShmem support.
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kernelPCI 
Device

mmap 
region

Qemu Userspace
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kernel

mmap 
region

Qemu Userspace
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Userspace

kernelPCI 
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PCI 
Device
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mmap mmap mmap

shared mem fd

eventfds

(a) Inter-VM Shmem Mechanism [15]
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(b) SR-IOV Mechanism [22]

Fig. 2. Overview of Inter-VM Shmem and SR-IOV Communication Mechanisms

Single Root I/O Virtualization (SR-IOV) is a PCI Express (PCIe) standard which
specifies the native I/O virtualization capabilities in PCIe adapters. As shown in Fig-
ure 2(b), SR-IOV allows a single physical device, or a Physical Function (PF), to present
itself as multiple virtual devices, or Virtual Functions (VFs). Each virtual device can be
dedicated to a single VM through the PCI pass-through, which allows each VM to di-
rectly access the corresponding VF. Hence, SR-IOV is a hardware-based approach to
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• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,925 organizations in 86 countries
– More than 484,000 (> 0.4 million) downloads from the OSU site directly
– Empowering many TOP500 clusters (Jul ‘18 ranking)

• 2nd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 12th, 556,104 cores (Oakforest-PACS) in Japan

• 15th, 367,024 cores (Stampede2) at TACC

• 24th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

Overview of MVAPICH2 Project

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family
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• Overview of Cloud Computing System Software

• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager
• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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• High-Performance Computing (HPC) has adopted advanced interconnects and protocols 

– InfiniBand

– 10/40/100 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Very Good Performance

– Low latency (few micro seconds)

– High Bandwidth (200 Gb/s with HDR InfiniBand)

– Low CPU overhead (5-10%)

• OpenFabrics software stack with IB, iWARP and RoCE interfaces are driving HPC systems

• How to Build HPC Clouds with SR-IOV and InfiniBand for delivering optimal performance?

Building HPC Cloud with SR-IOV and InfiniBand
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HPC, Big Data, and Deep Learning on Cloud Computing Systems: 
Challenges  

HPC, Big Data, Deep Learning Middleware

Networking Technologies
(InfiniBand, Omni-Path, 1/10/40/100 

GigE and Intelligent NICs)

Storage Technologies
(HDD, SSD, NVRAM, and NVMe-SSD)

HPC (MPI, PGAS, MPI+PGAS, 
MPI+OpenMP, etc.)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core architectures 
and accelerators)

Communication and I/O Library

QoS-aware, etc.

Big Data (HDFS, MapReduce, Spark, 
HBase, Memcached, etc.)

Resource Management and Scheduling Systems for Cloud Computing
(OpenStack Nova, Swift, Heat; Slurm, etc.)

Virtualization 
(Hypervisor and Container)

Locality- and NUMA-aware
Communication

Communication Channels

Task Scheduling
Data Placement & Fault-Tolerance

(Migration, Replication, etc.)

(SR-IOV, IVShmem, IPC-Shm, CMA)

Deep Learning (Caffe, TensorFlow, 
CNTK, BigDL, etc.)
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• Virtualization Support with Virtual Machines and Containers
– KVM, Docker, Singularity, etc.

• Communication coordination among optimized communication channels on Clouds
– SR-IOV, IVShmem, IPC-Shm, CMA, etc.

• Locality-aware communication
• Scalability for million to billion processors

– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

• Scalable Collective communication
– Offload; Non-blocking; Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• NUMA-aware communication for nested virtualization
• Integrated Support for GPGPUs and Accelerators
• Fault-tolerance/resiliency

– Migration support with virtual machines
• QoS support for communication and I/O
• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, MPI+UPC++, CAF, …)
• Energy-Awareness
• Co-design with resource management and scheduling systems on Clouds

– OpenStack, Slurm, etc.

Broad Challenges in Designing  Communication and I/O Middleware 
for HPC on Clouds
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• Overview of Cloud Computing System Software

• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager
• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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• MVAPICH2-Virt with SR-IOV and IVSHMEM

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

High-Performance MPI Library on HPC Clouds
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HPC on Cloud Computing Systems: Challenges Addressed by OSU So Far 

HPC and Big Data Middleware

Networking Technologies

(InfiniBand, Omni-Path, 1/10/40/100 
GigE and Intelligent NICs)

Storage Technologies
(HDD, SSD, NVRAM, and NVMe-SSD)

HPC (MPI, PGAS, MPI+PGAS, MPI+OpenMP, etc.)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core architectures 

and accelerators)

Communication and I/O Library

Future Studies

Resource Management and Scheduling Systems for Cloud Computing

(OpenStack Nova, Heat; Slurm)

Virtualization 
(Hypervisor and Container)

Locality- and NUMA-aware
Communication

Communication Channels
(SR-IOV, IVShmem, IPC-Shm, CMA)

Fault-Tolerance & Consolidation
(Migration)

QoS-aware
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MVAPICH2-Virt with SR-IOV and IVSHMEM
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Intra-Node Inter-VM Performance
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Latency at 64 bytes message size: SR-IOV(IB_Send) - 0.96μs, IVShmem - 0.2μs

Can IVShmem scheme benefit MPI communication within a node on SR-IOV enabled 
InfiniBand clusters?
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• Redesign MVAPICH2 to make it 
virtual machine aware

– SR-IOV shows near to native 
performance for inter-node point to 
point communication

– IVSHMEM offers shared memory based 
data access across co-resident VMs

– Locality Detector: maintains the locality 
information of co-resident virtual machines

– Communication Coordinator: selects the 
communication channel (SR-IOV, IVSHMEM) 
adaptively

Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM
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J. Zhang, X. Lu, J. Jose, R. Shi, D. K. Panda. Can Inter-VM 

Shmem Benefit MPI Applications on SR-IOV based 

Virtualized InfiniBand Clusters? Euro-Par, 2014

J. Zhang, X. Lu, J. Jose, R. Shi, M. Li, D. K. Panda. High 

Performance MPI Library over SR-IOV Enabled 

InfiniBand Clusters. HiPC, 2014
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• Compared to SR-IOV, up to 84% and 158% improvement on Latency & Bandwidth
• Compared to Native, 3%-8% overhead on both Latency & Bandwidth
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Application Performance (NAS & P3DFFT)

• Proposed design delivers up to 43% (IS) improvement for NAS

• Proposed design brings 29%, 33%, 29% and 20% improvement for INVERSE, RAND, 

SINE and SPEC
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• 32 VMs, 6 Core/VM 

• Compared to Native, 2-5% overhead for Graph500 with 128 Procs

• Compared to Native, 1-9.5% overhead for SPEC MPI2007 with 128 Procs

Application-Level Performance on Chameleon

SPEC MPI2007Graph500

5%
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• NPB Class B with 16 Processes on 2 Azure A8 instances
• NPB Class C with 32 Processes on 4 Azure A8 instances

• Comparable performance between MVAPICH2 and IntelMPI

Application-Level Performance on Azure
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• MVAPICH2-Virt with SR-IOV and IVSHMEM

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

High-Performance MPI Library on HPC Clouds
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SR-IOV-enabled VM Migration Support in MVAPICH2
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Execute Live Migration with SR-IOV Device
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Platform NIC No Guest OS 
Modification 

Device Driver 
Independent

Hypervisor 
Independent

Zhai, etc (Linux 
bonding driver)

Ethernet N/A Yes No Maybe (Xen)

Kadav, etc (shadow 
driver)

Ethernet Intel Pro/1000 gigabit NIC No Yes No (Xen)

Pan, etc (CompSC) Ethernet Intel 82576, Intel 82599 Yes No No (Xen)

Guay, etc InfiniBand Mellanox ConnectX2 QDR HCA Yes No Yes (Oracle VM 
Server (OVS) 3.0.)

Han Ethernet Huawei smart NIC Yes No No (QEMU+KVM)

Xu, etc (SRVM) Ethernet Intel 82599 Yes Yes No (VMware EXSi)

Overview of Existing Migration Solutions for SR-IOV

Can we have a hypervisor-independent and device driver-independent 
solution for InfiniBand based HPC Clouds with SR-IOV? 
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High Performance SR-IOV enabled VM Migration Framework

MPI
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MPI
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Ethernet
Adapter
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VF /
SR-IOV

VF /
SR-IOV

Migration 
Trigger

J. Zhang, X. Lu, D. K. Panda. High-Performance Virtual Machine Migration Framework for MPI Applications on SR-IOV enabled InfiniBand Clusters. 
IPDPS, 2017

• Consist of SR-IOV enabled IB Cluster and External 
Migration Controller

• Detachment/Re-attachment of virtualized 
devices: Multiple parallel libraries to coordinate 
VM during migration (detach/reattach SR-
IOV/IVShmem, migrate VMs, migration status)

• IB Connection: MPI runtime handles IB 
connection suspending and reactivating

• Propose Progress Engine (PE) and Migration 
Thread based (MT) design to optimize VM 
migration and MPI application performance 
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• Compared with the TCP, the RDMA scheme reduces the total migration time by 20%

• Total time is dominated by `Migration’ time; Times on other steps are similar across different schemes 

• Proposed migration framework could reduce up to 51% migration time 

Performance Evaluation of VM Migration Framework
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Bcast (4VMs * 2Procs/VM)

• Migrate a VM from one machine to another while benchmark is running inside
• Proposed MT-based designs perform slightly worse than PE-based designs because of  lock/unlock

• No benefit from MT because of NO computation involved 

Performance Evaluation of VM Migration Framework
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• 8 VMs in total and 1 VM carries out migration during application running 

• Compared with NM, MT- worst and PE incur some overhead

• MT-typical allows migration to be completely overlapped with computation 

Performance Evaluation with Applications
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• MVAPICH2-Virt with SR-IOV and IVSHMEM

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

High-Performance MPI Library on HPC Clouds
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MVAPICH2 with Containers (Docker and Singularity)
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Benefits of Containers-based Virtualization for HPC on Cloud
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• Experiment on NFS Chameleon Cloud

• Container has less overhead than VM

• BFS time in Graph 500 significantly increases as the number of container increases on one host. Why?
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• What are the performance bottlenecks when 
running MPI applications on multiple 
containers per host in HPC cloud? 

• Can we propose a new design to overcome the 
bottleneck on such container-based HPC 
cloud? 

• Can optimized design deliver near-native 
performance for different container 
deployment scenarios? 

• Locality-aware based design to enable CMA
and Shared memory channels for MPI 
communication across co-resident containers

Containers-based Design: Issues, Challenges, and Approaches 

J. Zhang, X. Lu, D. K. Panda. High Performance MPI Library for Container-based HPC Cloud on InfiniBand Clusters. 

ICPP, 2016
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• Two containers are deployed on the same socket and different socket

• 256 procs totally (4 pros/container, 64 containers across 16 nodes evenly)

• Up to 79% and 86%  improvement for Point-to-Point and MPI_Allgather, respectively (Cont-Opt vs. Cont-
Def)

• Minor overhead, compared with Native performance (Cont-*-Opt vs. Native-*)

Latency

MPI Point-to-Point and Collective Performance
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• 64 Containers across 16 nodes, pining 4 Cores per Container 

• Compared to Container-Def, up to 11% and 73% of execution time reduction for NAS and Graph 500

• Compared to Native, less than 9 % and 5% overhead for NAS and Graph 500

Application-Level Performance on Docker with MVAPICH2
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Singularity Performance on Different Processor Architectures

• MPI point-to-point Bandwidth

• On both Haswell and KNL, less than 7% overhead for Singularity solution

• Worse intra-node performance than Haswell because low CPU frequency, complex cluster mode, and cost 
maintaining cache coherence

• KNL - Inter-node performs better than intra-node case after around 256 Kbytes, as Omni-Path 

interconnect outperforms shared memory-based transfer for large message size

BW on Haswell BW on KNL
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Singularity Performance on Different Memory Access 

Mode (NUMA, Cache)

• MPI point-to-point Latency
• NUMA

– Intra-socket performs better than inter-socket case, as the QPI bottleneck between NUMA nodes

– Performance difference is gradually decreased, as the message size increases 

• Overall, less than 8% overhead for Singularity solution in both cases, compared with Native
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Singularity Performance on Different Memory Access 
Mode (Flat)
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• Explicitly specify DDR or MCDRAM for memory allocation
• MPI point-to-point BW: No significant performance difference
• MPI collective Allreduce: Clear benefits (up to 67%) with MCDRAM after around 256 KB message, 

compared with DDR
• More parallel processes increase data access, which can NOT fit in L2 cache, higher BW in MCDRAM
• Near-native performance for Singularity (less than 8% overhead)
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• 512 processors across 32 Haswell nodes
• Singularity delivers near-native performance, less than 7% overhead on Haswell 

with InfiniBand

7%

J. Zhang, X. Lu, D. K. Panda. Is Singularity-based Container Technology Ready for Running MPI Applications on HPC 

Clouds? UCC 2017.  (Best Student Paper Award)
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• MVAPICH2-Virt with SR-IOV and IVSHMEM

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

High-Performance MPI Library on HPC Clouds
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MVAPICH2 with Nested Virtualization
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Nested Virtualization: Containers over Virtual Machines

• Useful for live migration, sandbox application, legacy system 
integration, software deployment, etc.

• Performance issues because of the redundant call stacks (two-layer 
virtualization) and isolated physical resources 

Hardware

Host OS
Hypervisor

Redhat 

VM1

Docker Engine

Container2

bins/
libs

App
Stack

Container1

bins/
libs

App
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Ubuntu 

VM2
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App
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Container3
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Usage Scenario of Nested Virtualization

dockerA3

dockerA4

img 
A

img 
B

img 
C

Docker Registry 

dockerB1

dockerB2

dockerB3

dockerB4

VM 1: Ubuntu VM 2: MacOS VM 3: MacOS

Push

dockerA1

dockerA2

VM 0: Ubuntu 

Pull Pull Pull

VLAN 1 VLAN 2

Host
User A User B

Developer

• VM provides good isolation and security so that the applications and workloads of users A 
and B will not interfere with each other

• Root permission of VM can be given to do special configuration
• Docker brings an effective, standardized and repeatable way to port and distribute the 

applications and workloads 
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Multiple Communication Paths in Nested Virtualization

1. Intra-VM Intra-Container (across core 4 and core 5)
2. Intra-VM Inter-Container (across core 13 and core 14)

3. Inter-VM Inter-Container (across core 6 and core 12)
4. Inter-Node Inter-Container (across core 15 and the core on remote node)
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1 23 ...4

• Different VM placements introduce multiple communication paths 
on container level
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Performance Characteristics on Communication Paths

• Two VMs are deployed on the same and different socket, respectively
• *-Def and Inter-VM Inter-Container-1Layer have similar performance
• Still large gap compared to native performance with just 1layer design

3X

2X

1Layer* - J. Zhang, X. Lu, D. K. Panda. High Performance MPI Library for Container-based HPC Cloud on InfiniBand, ICPP, 2016
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Challenges of Nested Virtualization
• How to further reduce the performance overhead of running applications on 

the nested virtualization environment? 

• What are the impacts of the different VM/container placement schemes for 
the communication on the container level? 

• Can we propose a design which can adapt these different VM/container 

placement schemes and deliver near-native performance for nested 
virtualization environments?
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Overview of Proposed Design in MVAPICH2
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Two-Layer Locality Detector
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Channel

SHared Memory 
(SHM) Channel

Network (HCA)
Channel

Two-Layer Locality Detector: Dynamically 
detecting MPI processes in the co-
resident containers inside one VM as well 
as the ones in the co-resident VMs

Two-Layer NUMA Aware 
Communication Coordinator:
Leverage nested locality info, NUMA 
architecture info and message to 
select appropriate communication 
channel

J. Zhang, X. Lu, D. K. Panda. Designing Locality and NUMA Aware MPI Runtime for Nested Virtualization 

based HPC Cloud with SR-IOV Enabled InfiniBand, VEE, 2017
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Inter-VM Inter-Container Pt2Pt (Intra-Socket)
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• 1Layer has similar performance to the Default
• Compared with 1Layer, 2Layer delivers up to 84% and 184% 

improvement for latency and BW

Latency BW
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Inter-VM Inter-Container Pt2Pt (Inter-Socket)
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• 1-Layer has similar performance to the Default
• 2-Layer has near-native performance for small msg, but clear overhead on large msg
• Compared to 2-Layer, Hybrid design brings up to 42% and 25% improvement for 

latency and BW, respectively
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Applications Performance

• 256 processes across 64 containers on 16 nodes 
• Compared with Default, enhanced-hybrid design reduces up to 16% (28,16) and 10% (LU) of 

execution time for Graph 500 and NAS, respectively
• Compared with the 1Layer case, enhanced-hybrid design also brings up to 12% (28,16) and 6% (LU) 

performance benefit. 
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• Overview of Cloud Computing System Software

• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager

• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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Integrated Design with SLURM and OpenStack
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• OpenStack is one of the most popular 
open-source solutions to build clouds and 
manage virtual machines

• Deployment with OpenStack
– Supporting SR-IOV configuration

– Supporting IVSHMEM configuration
– Virtual Machine aware design of MVAPICH2 

with SR-IOV

• An efficient approach to build HPC Clouds 
with MVAPICH2-Virt and OpenStack

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack

J. Zhang, X. Lu, M. Arnold, D. K. Panda. MVAPICH2 over OpenStack with SR-IOV: An Efficient Approach to 

Build HPC Clouds. CCGrid, 2015
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Typical Usage Scenarios 
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• Requirement of managing and isolating virtualized resources of SR-IOV and IVSHMEM 

• Such kind of management and isolation is hard to be achieved by MPI library alone, but 
much easier with SLURM

• Efficient running MPI applications on HPC Clouds needs SLURM to support managing 
SR-IOV and IVSHMEM 

– Can critical HPC resources be efficiently shared among users by extending SLURM with 
support for SR-IOV and IVSHMEM based virtualization? 

– Can SR-IOV and IVSHMEM enabled SLURM and MPI library provide bare-metal performance 
for end applications on HPC Clouds?

Need for Supporting SR-IOV and IVSHMEM in SLURM
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Submit Job SLURMctld

VM Configuration File

physical 
node

SLURMd

SLURMd

VM Launching/Reclaiming

libvirtd

VM1

VF IVSHME
M

VM2

VF IVSHME
M

physical 
node

SLURMd

physical 
node

SLURMd

sbatch File

MPI MPI

physical resource request

physical node list

launch VMs

execute MPI job,

return results, 

cleanup

Lustre

image load

image snapshot

Im age P ool

1. SR-IOV virtual function
2. IVSHMEM device

3. Network setting
4. Image management

5. Launching VMs and 
check availability

6. Mount global storage, 
etc.

….

Architecture Overview
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load SPANK

reclaim VMs

register job 

step reply

register job 

step req

Slurmctld Slurmd Slurmd

release hosts

run job step req

run job step reply

mpirun_vm

MPI Job 

across VMs

VM Config

Reader

load SPANK

VM Launcher

load SPANK

VM Reclaimer

• VM Configuration Reader –

Register all VM configuration 

options, set in the job control 

environment so that they are 

visible to all allocated nodes. 

• VM Launcher – Setup VMs on 

each allocated nodes. 

- File based lock to detect occupied VF 

and exclusively allocate free VF

- Assign a unique ID to each IVSHMEM 

and dynamically attach to each VM

• VM Reclaimer – Tear down 

VMs and reclaim resources

SLURM SPANK Plugin based Design

MPIMPI

vm hostfile
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• VM Configuration Reader – VM 
options register 

• VM Launcher, VM Reclaimer –
Offload to underlying OpenStack 
infrastructure
- PCI Whitelist to passthrough free VF to VM

- Extend Nova to enable IVSHMEM when 
launching VM

SLURM SPANK Plugin with OpenStack based Design

J. Zhang, X. Lu, S. Chakraborty, D. K. Panda. 

SLURM-V: Extending SLURM for Building Efficient 
HPC Cloud with SR-IOV and IVShmem. Euro-Par, 
2016
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• 32 VMs across 8 nodes, 6 Core/VM

• EASJ - Compared to Native, less than 4% overhead with 128 Procs

• SACJ, EACJ – Also minor overhead, when running NAS as concurrent job with 64 Procs

Application-Level Performance on Chameleon (Graph500)

Exclusive A llocations
Sequentia l Jobs

0

500

100 0

150 0

200 0

250 0

300 0

24, 16 24, 20 26, 10

BF
S E

xe
cu

tio
n 

Tim
e (

m
s)

Problem Size (Scale, Edgefactor)

VM

N at ive

0

50

100

150

200

250

22, 10 22, 16 22, 20
BF

S E
xe

cu
tio

n 
Tim

e (
m

s)
Problem Size (Scale, Edgefactor)

VM

N at ive

0

50

100

150

200

250

22 10 22 16 22 20

BF
S E

xe
cu

tio
n 

Tim
e (

m
s)

Problem Size (Scale, Edgefactor)

VM

N at ive

Shared-host A llocations
C oncurrent Jobs

Exclusive A llocations
C oncurrent Jobs

4%



MUG 2018 70Network Based Computing Laboratory

• Overview of Cloud Computing System Software

• Overview of Modern HPC Cloud Architecture
• Challenges of Building HPC Clouds

• High-Performance MPI Library on HPC Clouds
• Integrated Designs with Cloud Resource Manager

• Appliances and Demos on Chameleon Cloud
• Conclusion and Q&A

Outline
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Available Appliances on Chameleon Cloud*
A ppliance D escription

CentO S 7  KVM  SR-
IO V

Cham eleon bare-m etal im age custom ized w ith  the KVM  hypervisor and a 
recom piled  kernel to  enable  SR-IO V over Infin iB and.
https://w w w .cham eleoncloud.org/appliances/3/

M PI bare-m etal 
cluster com plex

appliance (B ased on 
H eat)

This appliance deploys an  M PI cluster com posed of bare  m etal instances using the 
M VAPICH 2 library over Infin iB and. 
https://w w w .cham eleoncloud.org/appliances/29/

M PI +  SR-IO V KVM  
cluster (B ased on 

H eat)

This appliance deploys an  M PI cluster of KVM  virtual m achines using the 
M VAPICH 2-Virt im plem entation  and configured w ith  SR-IO V for h igh-perform ance 
com m unication  over Infin iB and. https://w w w .cham eleoncloud.org/appliances/28/

CentO S 7  SR-IO V 
RD M A-H adoop

The CentO S 7  SR-IO V RD M A-H adoop appliance is bu ilt from  the CentO S 7  
appliance and additionally contains RD M A-H adoop library w ith SR-IO V.
https://w w w .cham eleoncloud.org/appliances/17/

• Through these available appliances, users and researchers can easily deploy HPC clouds to perform experiments and run jobs with

– High-Performance SR-IOV + InfiniBand
– High-Performance MVAPICH2 Library over bare-metal InfiniBand clusters
– High-Performance MVAPICH2 Library with Virtualization Support over SR-IOV enabled KVM clusters

– High-Performance Hadoop with RDMA-based Enhancements Support
[*] O nly include appliances contributed by O SU  N ow Lab
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MPI Complex Appliances based on MVAPICH2 on Chameleon

1. Load VM Config 
2. Allocate Ports 
3. Allocate FloatingIPs 
4. Generate SSH Keypair 
5. Launch VM 
6. Attach SR-IOV Device 
7. Hotplug IVShmem Device 
8. Download/Install 

MVAPICH2-Virt 
9. Populate VMs/IPs 
10. Associate FloatingIPs 

MVAPICH2-Virt Heat-

based Complex Appliance 



MUG 2018 73Network Based Computing Laboratory

Demos on Chameleon Cloud

• A Demo of Deploying MPI Bare-Metal Cluster with InfiniBand

• A Demo of Deploying MPI KVM Cluster with SR-IOV enabled 
InfiniBand

• Running MPI Programs on Chameleon
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Login to Chameleon Cloud

https://chi.tacc.chameleoncloud.org/dashboard/auth/login/
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Create a Lease

1

2
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Create a Lease



MUG 2018 77Network Based Computing Laboratory

Lease Starts
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Select Complex Appliance - MPI Bare-Metal Cluster
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Get Template of MPI Bare-Metal Appliance 
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Save URL of Template (Will be used later)
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Launch Stack
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Use Saved Template URL as Source
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Input Stack Information
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Use Created Lease
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Stack Creation In Progress
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Stack Details
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Demos on Chameleon Cloud

• A Demo of Deploying MPI Bare-Metal Cluster with InfiniBand

• A Demo of Deploying MPI KVM Cluster with SR-IOV enabled 
InfiniBand

• Running MPI Programs on Chameleon
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Select Complex Appliance - MPI KVM with SR-IOV Cluster
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Get Template of MPI KVM with SR-IOV Appliance 
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Save URL of Template (Will be used later)
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Launch Stack
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Instances in Stack (Spawning …)
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Demos on Chameleon Cloud

• A Demo of Deploying MPI Bare-Metal Cluster with InfiniBand

• A Demo of Deploying MPI KVM Cluster with SR-IOV enabled 
InfiniBand

• Running MPI Programs on Chameleon
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Create Stack Successfully
Login to the first instance with Floating IP



MUG 2018 95Network Based Computing Laboratory

Login Instance with Floating IP
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SSH to Other Instances



MUG 2018 97Network Based Computing Laboratory

Compile MPI Program – Hello World
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Distribute Executable to Other Instances
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Run MPI Program – Hello World
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• A comprehensive suite of benchmarks to 
– Compare performance of different MPI libraries on various networks and systems
– Validate low-level functionalities
– Provide insights to the underlying MPI-level designs

• Started with basic send-recv (MPI-1) micro-benchmarks for latency, bandwidth and bi-directional bandwidth
• Extended later to

– MPI one-sided
– Collectives
– GPU-aware data movement
– OpenSHMEM (point-to-point and collectives)
– UPC

• Has become an industry standard 
• Extensively used for design/development of MPI libraries, performance comparison of MPI libraries and even 

in procurement of large-scale systems

• Available from http://mvapich.cse.ohio-state.edu/benchmarks
• Available in an integrated manner with MVAPICH2 stack 

Overview of OSU MPI Micro-Benchmarks (OMB) Suite

http://mvapich.cse.ohio-state.edu/benchmarks
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Examples of OMB Benchmarks

MPI Two-sided Pt2Pt MPI One-sided Pt2Pt MPI Collectives 

(64 Procs = 4 nodes * 16 Procs/node)

MPI_Latency (Inter-node, Intra-
node)

MPI_Put_Latency MPI_Bcast

MPI_BW (Inter-node, Intra-node) MPI_Alltoall
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Run OSU MPI Benchmarks – Latency and Bandwidth
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Next Steps of MVAPICH2-Virt
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• MVAPICH2-Virt over SR-IOV-enabled InfiniBand is an efficient approach to build HPC Clouds
– Standalone, OpenStack, Slurm, and Slurm + OpenStack

– Support  Virtual Machine Migration with SR-IOV InfiniBand devices

– Support Virtual Machine, Container (Docker and Singularity), and Nested Virtualization

• Very little overhead with virtualization, near native performance at application level
• Much better performance than Amazon EC2

• MVAPICH2-Virt is available for building HPC Clouds
– SR-IOV, IVSHMEM, Docker and Singularity, OpenStack

• Appliances for MVAPICH2-Virt are available for building HPC Clouds
• Demos on NSF Chameleon Cloud
• Future releases for supporting running MPI jobs in VMs/Containers with SLURM, etc.

• SR-IOV/container support and appliances for other MVAPICH2 libraries (MVAPICH2-X, 
MVAPICH2-GDR, ...)

Conclusions
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luxi@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~luxi

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE
http://mvapich.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

