
Confidential © 2018 Arm Limited

• John Linford <john.Linford@arm.com>
• 6 August 2018

Advanced
Arm Forge for

MPI Performance
Engineering

2 Confidential © 2018 Arm Limited

Tutorial Schedule

• [15] Performance Engineering: Methodology and Tools

• [15] Arm Forge Quick Start: DDT, MAP, and Performance Reports

• [30] Exercises
• Interactive debugging

• Profiling from the command line

• Detect memory leaks

• Debug invalid memory access

• [30] Break

• [20] Exercises and Examples
• Explore I/O imbalance with MAP and performance reports

• Real-world success story

• Custom metrics for Lustre profiling

• [10] Q&A

Confidential © 2018 Arm Limited

Performance Engineering
Methodology and Tools

4 Confidential © 2018 Arm Limited

Welcome to the age of machine-scale computing
It’s dangerous to go alone! Take this.

30 years ago: human-scale computing Today: machine-scale computing

Cray 2:
• 4 vector processors
• 1.9 gigaflops (9.5 mflops/Watt)

Summit:
• 2,282,544 cores
• 2,000,000 gigaflops (154 mflops/Watt)

5 Confidential © 2018 Arm Limited

Your brain is no longer enough
No way around it, you need tools to achieve maximum performance.

• Supercomputers are now incomprehensibly complex.
• Naïve optimization may harm performance.
• Performance engineering tools are essential for realizing performance at scale.

< <

6 Confidential © 2018 Arm Limited

Your brain is no longer enough
No way around it, you need tools to achieve maximum performance.

• Supercomputers are now incomprehensibly complex.
• Naïve optimization may harm performance.
• Performance engineering tools are essential for realizing performance at scale.

7 Confidential © 2018 Arm Limited

Identifying and resolving performance issues

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

Compute

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

-50x

-10x

-5x

-2x

Communication

8 Confidential © 2018 Arm Limited

Arm’s solution for any architecture, at any scale
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP
FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

9 Confidential © 2018 Arm Limited

Arm’s solution for any architecture, at any scale
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

DDT MAP
FORGE

PERFORMANCE
REPORTS

10 Confidential © 2018 Arm Limited

Arm Forge = DDT + MAP
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

11 Confidential © 2018 Arm Limited

DDT: Production-scale debugging
Isolate and investigate faults at scale

• Which MPI rank misbehaved?
• Merge stacks from processes and threads
• Sparklines comparing data across processes

• What source locations are related to the problem?
• Integrated source code editor
• Dynamic data structure visualization

• How did it happen?
• Parse diagnostic messages
• Trace variables through execution

• Why did it happen?
• Unique “Smart Highlighting”
• Experiment with variable values

12 Confidential © 2018 Arm Limited

DDT: Feature Highlights
Switch between

MPI ranks and
OpenMP threads

Display pending
communications

Visualise data
structures

Connect to
continuous
integration

13 Confidential © 2018 Arm Limited

Multi-dimensional Array Viewer
What does your data look like at runtime?

• View arrays
• On a single process
• Or distributed on many ranks

• Use metavariables to browse the array
• Example: $i and $j
• Metavariables are unrelated to the variables in your

program.
• The bounds to view can be specified
• Visualise draws a 3D representation of the array

• Data can also be filtered
• “Only show if”: $value > 0 for example $value being

a specific element of the array

14 Confidential © 2018 Arm Limited

MAP: Production-scale application profiling
Identify bottlenecks and rewrite code for better performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile mpirun –n 48 ./example

15 Confidential © 2018 Arm Limited

How MAP is different
MAP’s flagship feature is lightweight, highly scalable performance profiling

Adaptive
sampling

Sample
frequency

decreases over
time

Data never
grows too much

Run for as long
as you want

Scalable
Same scalable

infrastructure as
Allinea DDT

Merges sample
data at end of

job

Handles very
high core counts,

fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor spends

time

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling

Identifies lost
compute time

Detects OpenMP
issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling within
your code

16 Confidential © 2018 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)Relevant advice

to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

17 Confidential © 2018 Arm Limited

Arm Performance Reports
A high-level view of application performance with “plain English” insights

18 Confidential © 2018 Arm Limited

Arm Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report.

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency

System
usage

19 Confidential © 2018 Arm Limited

VI-HPS and the tools ecosystem
See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

Confidential © 2018 Arm Limited

Arm Forge Quick Start
Tool cheat sheets

21 Confidential © 2018 Arm Limited

Arm DDT cheat sheet
Start DDT interactively, remotely, or from a batch script.

• Load the environment module:
• $ module load forge

• Prepare the code:
• $ mpicc -O0 -g myapp.c -o myapp.exe

• $ mpfort -O0 -g myapp.f -o myapp.exe

• Start DDT in interactive mode:
• $ ddt mpirun -n 8 ./myapp.exe arg1 arg2 …

• Or use reverse connect:
• On the login node:

• $ ddt &

• (or use the remote client)

• Then, edit the job script to run the following command and submit:

• ddt --connect mpirun -n 8 ./myapp.exe arg1 arg2 …

22 Confidential © 2018 Arm Limited

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs.

• You can run the debugger in non-interactive mode
• For long-running jobs
• For automated testing, continuous integration…

• To do so, use the following arguments:
• $ ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe

• --offline enable non-interactive debugging
• --output specifies the name and output of the non-interactive debugging session

• Html
• Txt

• Add --mem-debug to enable memory debugging and memory leak detection

23 Confidential © 2018 Arm Limited

DDT command line options
$ ddt --help
Arm Forge 18.2.1 - Arm DDT

Usage: ddt [OPTION...] [PROGRAM [PROGRAM_ARGS]]
ddt [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

--connect Reverse Connect (launch as a server and wait)
--attach=[host1:]pid1,[host2:]pid2... [PROGRAM] attach to PROGRAM being run by list of host:pid
--attach-mpi=MPI_PID [--subset=rank1,rank2,rank3,...] [PROGRAM] attach to processes in an MPI program.
--break-at=LOCATION[,START:EVERY:STOP] [if CONDITION] set a breakpoint at LOCATION
--trace-at=LOCATION[,START:EVERY:STOP],VAR1,VAR2,... set a tracepoint at LOCATION
--cuda enable CUDA
--mem-debug[=(fast|balanced|thorough|off)] configure memory debugging (defaults to fast)
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--offline run through program without user interaction
-s, --silent don't write unnecessary output to the command line

24 Confidential © 2018 Arm Limited

Arm MAP cheat sheet
Generate profiles and view offline

• Load the environment module
• $ module load forge

• Prepare the code
• $ mpicc -O0 -g myapp.c -o myapp.exe
• $ mpfort -O0 -g myapp.f -o myapp.exe

• Offline: edit the job script to run Arm MAP in “profile” mode
• $ map --profile mpirun ./myapp.exe arg1 arg2

• View profile in MAP:
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)

25 Confidential © 2018 Arm Limited

MAP command line options
$ map --help
Arm Forge 18.2.1 - Arm MAP

Usage: map [OPTION...] [PROGRAM [PROGRAM_ARGS]]
map [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
map [OPTION...] [MAP_FILE]

--connect Reverse Connect (launch as a server and wait for the GUI to connect)
--cuda-kernel-analysis Analysis of the CUDA kernel source code lines
--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--export=FILE.json Exports a specified .map file as JSON
--export-functions=FILE Export all the available columns in the functions view to a CSV file (use --profile)
--select-ranks=RANKS Select ranks to profile.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--profile run through program without user interaction

26 Confidential © 2018 Arm Limited

Arm Performance Reports cheat sheet
Generate text and HTML reports from application runs or MAP files

• Load the environment module:
• $ module load reports

• Run the application:
• perf-report mpirun -n 8 ./myapp.exe

• … or, if you already have a MAP file:
• perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• Analyze the results
• $ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• $ firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

27 Confidential © 2018 Arm Limited

Performance Reports command line options
$ perf-report --help
Arm Performance Reports 18.2.1 - Arm Performance Reports

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] MAP_FILE

--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
--nodes=NUMNODES configure the number of nodes for MPI jobs
-o, --output=FILE writes the Performance Report to FILE instead of an auto-generated name.
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--procs-per-node=PROCS configure the number of processes per node for MPI jobs
--select-ranks=RANKS Select ranks to profile.

28 Confidential © 2018 Arm Limited

The Forge GUI and where to run it
DDT and MAP provide powerful GUIs that can be run in a variety of configurations.

Ultimately, that’s where the tools will run.
But what about the GUI?

On the head node
(interactive mode + reverse connect)

On the compute node
(offline OR interactive mode)

Remote client
(remote launch + reverse

connect)

29 Confidential © 2018 Arm Limited

Launching the Forge Remote Client
The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
• https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client
• Open Forge Remote Client
• Create a new connection: Remote Launch è Configure è Add

– Hostname: <username>@<hostname>
– Remote installation directory: </path/to/arm-forge/X.Y/>

• Connect!

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

30 Confidential © 2018 Arm Limited

Arm Forge 18.1.2 and MVAPICH2

• To use DDT’s memory debugging features, set the environment variable
MV2_ON_DEMAND_THRESHOLD to the maximum job size you expect. This setting
should not be a system wide default; it should be set as needed.

• To use mpirun_rsh with DDT, from File → Options go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add -
hostfile <hosts>, where <hosts> is the name of your hosts file, within the
mpirun_rsh arguments field in the Run window.

• To enable message Queue Support MVAPICH 2 must be compiled with the flags
--enable-debug --enable-sharedlib. These are not set by default.

• MVAPICH2 MPI programs cannot be started using Express Launch syntax.
• Do use: “ddt ./a.out” and configure MPI launch parameters in the GUI.
• Don’t use: “ddt mpirun <mpi_args> ./a.out”

Confidential © 2018 Arm Limited

Interactive Debugging
Crash and hang

32 Confidential © 2018 Arm Limited

C = A x B + C
Simply multiply and add two matrices

Algorithm

1. Rank 0 (R0) initialises matrices A, B & C

2. R0 slices the matrices A & C and sends
them to Rank 1…N (R1+)

3. R0 and R1+ perform the multiplication

4. R1+ send their results back to R0
5. R0 writes the result matrix C to file

R0

R1

RN

33 Confidential © 2018 Arm Limited

Fix a simple crash in a MPI code
Simple matrix multiply and add? No problem! Except that it crashes…

Exercise Outline
• Objectives

• Discover Arm DDT’s interface
• Interactively debug a crash in a MPI application

• Commands
$ make
$ mpirun -np 4 ./mmult1_c.exe
Observe crash
$ ddt ./mmult1_c.exe
Observe cause of crash

Initial Result: Crash!

34 Confidential © 2018 Arm Limited

Answer: Fix incorrect limits on k-loop
Incorrect limits lead to invalid memory access

Before
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=size,size*size
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

After
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=0,size-1
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

35 Confidential © 2018 Arm Limited

Answer: Fix incorrect limits on i-loop
Incorrect limits on i-loop lead to unmatched MPI_Send

Before
73 do i=1,nproc-2
74 call MPI_Send(mat_a(slice*i), slice, &

MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, size*size, &
MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slice*i), slice, &
MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr)

77 end do

After
73 do i=1,nproc-1
74 call MPI_Send(mat_a(slice*i), slice, &

MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, size*size, &
MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slice*i), slice, &
MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr)

77 end do

Confidential © 2018 Arm Limited

Improve performance
Efficient memory access

37 Confidential © 2018 Arm Limited

Fix inefficient memory access pattern
It works! But wow it’s slow.

Exercise Outline
• Objectives

• Discover Arm MAP’s interface
• Gather initial profiles of a MVAPICH2 application

• Commands
$ make
$ map --profile -n 4 \

./mmult2_f90.exe
$ map mmult2_f90_4p*.map
Observe profile

Initial Result: SLOW

38 Confidential © 2018 Arm Limited

Initial profile
Find the hotspot: look for the line with the highest core time.

39 Confidential © 2018 Arm Limited

Memory access patterns

• Data locality
• Temporal locality: use of data within a short time of its last use
• Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {

for (loop=0; loop < 10; loop++) {
… = … x[i] …

}
}

Spatial locality example
for (i=0 ; i < N*s; i+=s) {

… = … x[i] …
}

40 Confidential © 2018 Arm Limited

Memory Accesses and Cache Misses
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[i*n+j]=…

}
}

i=0, n=4

j=0 j=1

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[j*n+i]=…

}
}

A

Ai=0, n=4

j=0

HIT

MISS
j=1

41 Confidential © 2018 Arm Limited

Answer: Transpose matrix and interchange loops
Transposing the matrix improves locality à performance

Before
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=0,size-1
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

After
165 do i=0,size/nslices-1
166 do j=0,size-1
167 res=0.0
168 do k=0,size-1
169 res=A(i*size+k)*transB(j*size+k)+res
170 end do
171 C(i*size+j)=res+C(i*size+j)
172 end do
173 end do

42 Confidential © 2018 Arm Limited

Final profile
About 3x faster

Before

After

Confidential © 2018 Arm Limited

Leak Detection
… and DDT in Offline Mode

44 Confidential © 2018 Arm Limited

Possible memory leak
Transpose is working great, but sometimes I run out of memory?

Exercise Outline
• Objectives

• Use DDT in offline mode
• Explore DDT’s report logbook

• Commands
$ make
$ ddt --offline \

--output=report.html \
-n 4 \

./mmult3_f90.exe
$ xdg-open report.html
Observe report

DDT in offline mode (--offline)

45 Confidential © 2018 Arm Limited

DDT Debugging Report
Use DDT’s reporting feature to debug long-running applications

46 Confidential © 2018 Arm Limited

View the memory leak report to see unfreed allocations
Allocations that are not freed when the program exits could be leaks

Click allocation to see function source Review source code to verify leak

Confidential © 2018 Arm Limited

Memory Debugging
Allocation tracking and guard pages

48 Confidential © 2018 Arm Limited

Three levels of heap debugging overhead

See user-guide:

Chapter 12.3.2

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

49 Confidential © 2018 Arm Limited

Tri-diagonal solve: segmentation fault
Crashing with invalid memory reference. Sounds like a job for a memory debugger!

Exercise Outline
• Objectives

• Use DDT’s memory debugging features
• Use guard pages to find out-of-bounds access

• Commands
$ make
$ ddt -n 4 ./trisol.exe
Enable fast memory debugging
Do not enable guard pages

Invalid memory access

50 Confidential © 2018 Arm Limited

DDT’s heap memory debugging framework

When manual linking is used,
untick “Preload” box

•LD_PRELOAD is usually used automatically
•Not on static binaries, not on all Crays or old SLURMs

Dynamically linked binaries

•If not, manual linking is required
LFLAGS = -dynamic -L/path/to/forge/lib/64/ -zmuldefs -Wl,--undefined=malloc -ldmalloc

Statically linked binaries

51 Confidential © 2018 Arm Limited

It works in DDT?????
The code appears to run fine when launched from the debugger! Why?

DDT launch configuration Uh oh, program output looks great

It should have crashed! What changed?

52 Confidential © 2018 Arm Limited

Guard pages (aka “electric fences”)

4 kBytes
(typically)

MEMORY ALLOCATION GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATIONGUARD
PAGE

GUARD
PAGE

• A powerful feature…:
• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:
• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

53 Confidential © 2018 Arm Limited

OK, this time enable guard pages
The code appears to run fine when launched from the debugger! Why?

Add one guard page after every allocation Gotcha! Write OOB at res(k+2)

Confidential © 2018 Arm Limited

Debugging Imbalance
MPI I/O

55 Confidential © 2018 Arm Limited

Can we improve I/O performance?
R0 responsible for all file I/O after R1+ return results. Surely we can do better?

Exercise Outline
• Objectives

• Use MAP’s I/O profiling features
• Use performance reports to quantify speedup

• Commands
$ make
$ map --profile -n 4 \

./mmult5_f90.exe
$ perf-report mmult5_f90_4p*.map
$ xdg-open mmult5_f90_4p*.html

Performance report shows MPI bound

56 Confidential © 2018 Arm Limited

Initial profile shows MPI_Finalize dominates
Time spent in MPI_Finalize is due to load imbalance in file I/O

57 Confidential © 2018 Arm Limited

Answer: improve scalability of I/O routines
Use MPI-IO to let all MPI ranks write their results to file simultaneously.

Before
97 if(myrank==0) then
100 do i=1,nproc-1
101 call MPI_Recv(mat_c(slice*i), slice, &

MPI_DOUBLE, &i, 500+i, &
MPI_COMM_WORLD, st, ierr)

102 end do
103 else
106 call MPI_Send(mat_c, slice, MPI_DOUBLE, &

0, 500+myrank, &
MPI_COMM_WORLD, ierr)

107 end if
109 if(myrank==0) then
111 call mwrite(size, mat_c, filename)
113 endif

After
102 call MPI_FILE_OPEN(MPI_COMM_WORLD, &

filename, &
MPI_MODE_CREATE+MPI_MODE_WRONLY, &
MPI_INFO_NULL, fh, ierr)

103 call MPI_FILE_SET_VIEW(fh, &
0_MPI_OFFSET_KIND, MPI_DOUBLE, &
MPI_DOUBLE, 'native’, &
MPI_INFO_NULL, ierr)

104 call MPI_FILE_WRITE_AT(fh, disp, mat_c, &
slice, MPI_DOUBLE, st, ierr)

105 call MPI_BARRIER(MPI_COMM_WORLD, ierr)
106 call MPI_FILE_CLOSE(fh, ierr)

58 Confidential © 2018 Arm Limited

New approach: use MPI-IO for file output
Each MPI rank writes its results to it’s own part of the output file

Before: runtime 13 seconds After: runtime 5 seconds (2.6x speedup)

59 Confidential © 2018 Arm Limited

Final profile shows balanced I/O and compute dominates
New approach is about 3x faster

Confidential © 2018 Arm Limited

Success at Scale
Curtin Quantum Collisions

61 Confidential © 2018 Arm Limited

CCC and the ORNL GPU Hackathon @ Pawsey
Quantum collisions in atomic and molecular physics

• CCC: Quantum mechanics
• Fusion energy
• Laser science
• Lighting industry
• Medical imaging / therapy
• Astrophysics

• Igor Bray, Head of Physics and Astronomy, and
the Theoretical Physics Group, in the Faculty of
Science and Engineering, at Curtin University

62 Confidential © 2018 Arm Limited

Initial profile at production scale

63 Confidential © 2018 Arm Limited

Load balancer is imbalanced?
Customized load balancing algorithm wasn’t delivering expected results

0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91%
LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

1 8 0 -7 591 573 872 1.97 45150 0 350 0 80%
LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86%
LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91%
LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

64 Confidential © 2018 Arm Limited

“That makes no sense!”
Computing one grid point takes as much time as computing the entire grid

Surprise! Didn’t expect that.

65 Confidential © 2018 Arm Limited

Final profile, again at production scale
Found an unbounded array copy a(:) that should have been a(1:N)

66 Confidential © 2018 Arm Limited

Before and after

67 Confidential © 2018 Arm Limited

Balanced the load balancer
Load can be balanced mow that work blocks are of expected sizes

Before:
0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
1 8 0 -7 591 573 872 1.97 45150 0 350 0 80% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

After:
0 8 0 -10 174 329 492 1.06 13530 0 85 -1 93% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
1 8 0 -11 415 577 872 1.40 43956 0 340 0 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
2 8 0 -11 616 757 1153 1.55 79003 0 592 1 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
3 8 0 -12 667 874 1331 1.46 105111 0 734 2 96% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

Confidential © 2018 Arm Limited

Custom metrics for Lustre
Combine I/O performance data
from system and application

69 Confidential © 2018 Arm Limited

Advanced I/O investigation of Lustre on Archer
Simultaneously view system-level and application-level performance.

• Show data from Lustre client logs along with application data
• iPIC3D: kinetic simulation of plasma

• Fully 3D implicit particle-in-cell (PIC)
• C++ and MPI
• Intermediate simulation results saved in VTK binary files, single file per quantity
• Checkpointing done through HDF5 to individual files per process
• Field values saved using collective MPI-IO to single file

70 Confidential © 2018 Arm Limited

Available performance data
Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data

• Lustre logs: each read, write, or
metadata operation recorded from
each Lustre client.

• Aggregate I/O data for precise
bandwidth figures for read/write at
any moment in time.

• Max/min/mean bandwidth.

• Scheduler logs: application run start
and end time and assigned nodes.

Application level performance data

• Approximate I/O bandwidth in a
timeline.

• Approximate classification of I/O
instructions (methods).

• In block-synchronous approach, it is
possible to identify different I/O phases.

71 Confidential © 2018 Arm Limited

MAP aligns the system timeline with the application timeline
Lustre data is read from the lustre client’s log files, while application data is read directly.

Checkpoint I/O corresponds
to spike in Lustre write rate

N-N file read shows spike in
file open/read operations.

72 Confidential © 2018 Arm Limited

We can focus on each I/O operation individually
Select a portion of the application timeline to view the source code performing I/O.

73 Confidential © 2018 Arm Limited

MAP’s timeline shows I/O overlapping with communication
We see elevated Lustre write rate when writing checkpoint restart files in HDF5.

74 Confidential © 2018 Arm Limited

It’s possible to overlap different I/O approaches
HDF5 and VTK I/O operations occur at the same time on different ranks.

Confidential © 2018 Arm Limited

Wrap Up

76 Confidential © 2018 Arm Limited

Five great things to try with Arm DDT

The scalable print
alternative Stop on variable change Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

77 Confidential © 2018 Arm Limited

Six Great Things to Try with Arm MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access
Restructure for
vectorization

78 Confidential © 2018 Arm Limited

Wrap Up
Visit arm.com/hpc to learn more about Arm Forge and download a free trial.

• Tools are a must-have when programming HPC systems

• Use a structured, profile-driven optimization methodology

• Arm DDT can help improve code correctness

• Arm MAP can help improve code performance

• Arm Forge = DDT + MAP is a great choice at scale

Download at arm.com/hpc

7979

Thank You
Danke
Merci
��
�����
Gracias
Kiitos
감사합니다
ध"यवाद
הדות

Confidential © 2018 Arm Limited

