eior

.

e +
J Advanced
Arm Fo

Tutorial Schedule

2

15] Performance Engineering: Methodology and Tools
[15] Arm Forge Quick Start: DDT, MAP, and Performance Reports

30] Exercises
- Interactive debugging
- Profiling from the command line
- Detect memory leaks
- Debug invalid memory access

[30] Break

[20] Exercises and Examples
- Explore I/O imbalance with MAP and performance reports
- Real-world success story
« Custom metrics for Lustre profiling

[10] Q&A

Confidential © 2018 Arm Limited

arm

- Performance Engineering
Methodology and Tools

Confidential © 2018 Arm Limited

arm

Welcome to the age of machine-scale computing

It’s dangerous to go alone! Take this.

30 years ago: human-scale computing

Cray 2:
e 4 vector processors
e 1.9 gigaflops (9.5 mflops/Watt)

4 Confidential © 2018 Arm Limited

Today: machine-scale computing

e — ——— ——— -—
> BT S o g ' -
BE BT e P e -

Summit:
. 2,282,544 cores
e 2,000,000 gigaflops (154 mflops/Watt)

arm

Your brain is no longer enough

No way around it, you need tools to achieve maximum performance.

e Supercomputers are now incomprehensibly complex.
* Naive optimization may harm performance.

Performance engineering tools are essential for realizing performance at scale.

=— ITHE BRAIN

g7 —
< =

OF A GEEK

.;

L 13
D
\

N
h

5 Confidential © 2018 Arm Limited

arm

Your brain is no longer enough

No way around it, you need tools to achieve maximum performance.

e Supercomputers are now incomprehensibly complex.

* Naive optimization may harm performance.

* Performance engineering tools are essential for realizing performance at scale.

6 Confidential © 2018 Arm Limited q r m

Identifying and resolving performance issues

Focus Optimization

_Identify Hotspots

~ - e —_—

Refine the

e e e e e e e e =

arm

Confidential © 2018 Arm Limited

7

Arm’s solution for any architecture, at any scale

Commercial tools for aarch64, x86 64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools
4
arm arm arm
FORGE C/C++ & FORTRAN ALLINEA STUDIO
LDDTJ LMAPJ COMPILER

% C/C++ Compiler

+ =

¢ Fortran Compiler

4 f(7 A % Performance Libraries

. arm arm 2 Forge (DDT and MAP)

PERFORMANCE PERLTSR%IFE?CE T R~
- REPORTS S

8 Confidential © 2018 Arm Limited q r m

arm
PERFORMANCE
REPORTS

Arm Forge = DDT + MAP

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

—+

. N B
Fully Scalable

° L
Very user-friendly

10 Confidential © 2018 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
- Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

DDT: Production-scale debugging

Isolate and investigate faults at scale

384

e Which MPI rank misbehaved?

- Merge stacks from processes and threads
- Sparklines comparing data across processes | '

Text Communicator Queue Pointer From (local) From (global) To (local) To (global)

* What source locations are related to the problem?

- Integrated source code editor
- Dynamic data structure visualization

* How did it happen?
- Parse diagnostic messages Locals Curreniline(s) | Currentswack |
- Trace variables through execution C | = X
Variable Name Value
* Why did it happen? jeol W - I
. . . 2724 B
- Unique “Smart Highlighting” A 7 “ll
- Experiment with variable values STz — PP TPOETIUET)
150120 Zinitialize_pop (initial f290:119)
150120 Zinit_communicate (communicate f90:87)
150119] §~-create_ocn_oommunimtor (communicate f90:300)
“ create_ocn_communicator (communicate f90:303)

11 Confidential © 2018 Arm Limited

DDT: Feature Highlights

dit View Control Tools Window Help

Switch between ll.> R EE T ERE ok

|| current Group: [AT <]

Focus on current: ¢ Group (Process ([Thread||[™ Step Threads Together |

MPI ranks and ™

Project Files

CIEEIE]
0/0/0/0/0/0/00

OpenMP threads

8 x| ¢ mainci) | ¢ hydro_godunovc(€ conservarc) I

arch (Ctri+K

File View Cg

< .

st int Hoxt,

B ® Application Code
=

| [}
K Headers
=- ¥ Sources
Current Grou =
@ T cclockc

All

Create Group

Project Files

t int Hnyt,
t int Hoxyt,
t int slices,

_t uold[Hnvar

int &, 3, ivar, s;

@® [o MpiEnvironment.cc 3¢ l ™ |atticeData.cc 3 | £ xyzpart.c 3

Rank 0: 583.11 kB
Rank 1: 58.71 kB

Search (Ctrl+K) 1 LN 546 if (allpicks[i].val != -1)
547 allpicks[ntsamples++] = allpicks[i];
- [template.cc (4] 548 }
f template_annotator.cc 549
- template_cache.cc 550 /* Sort all the picks */
y Leak Report es, allpicks);
T repent. - the atecanons.
A48 ranks

Legena
BN NN W oo (muR3.c139)

al splitters. Set thq

1++
W ompi tree_list_grow Ilpicks[i*ntsamples/nf

Rank 2: 5871 kB evern_del_internal (misheap-internatn) | = IDX MIN;
Rank 3: S8.71 kB W N other = IDX_MAX;
Rank 4: 5871 ks -
Rank 5: $8.71 k8
Rank 6: 58.71 k8 T
n.-:k 7. S871 k8 e allpicks */
=
™ Vector3DHemeLb.cc B 565 STOPTIMER(ctrl, ctrl->AuxTmr2);
- VelocityField.cc 564 STARTTIMER(ctrl, ctrl->AuxTmr3);
0 n n ec O & W Viewpoint.cc 565 384
1 — ! I D 566 /* Compute the number of elements tha
.
CO ntl n uous Input/Output | ints | hpoints | Stacks | ints | output | Logbook |
Stacks
Processes Threads Function

17220 117220]J='main (main.cc:37)

integration

17220(117220 | B

cc:63)

El

(Simulati cc:154)

17220]17220[] EISimulati
=h Ib::

17220 117220 |

ryReader::LoadAndDecompose (GeometryReader.cc:14

1722017220] =h

ry::! yReader::OptimiseDomainDecomposition (Geometry|

17220117220
17220 |17220[|
17220 117220 1

12 Confidential © 2018 Arm Limited

17220]17220[| =h g p ::0p
= hemelb::geometry::decomposition::Optimised Decomposition::CallParmetis (O|

ry::dec omposition::OptimisedDecom

=/ ParMETIS_V3_PartGeomKway (gkmetis.c:90)
= libparmetis__Coordinate_Partition (:

¥ Unexpected

127 O Show local ranks
@ Show global ranks

[7] Only ranks with messages

Select communicator

MPI_COMM_WORLD
MPI_COMM_SELF
MPI_COMM_NULL

Display pending

el 1L»)
256 [Show Diagram Key]
[Update]
Text Communicator Queue From (local) From (global) To (local) To (global)
1 |Receive: 0x8... MPI COMMUN... Receive 0x0 149 405 113 369
|
2 |Receive: 0x8... MPI COMMUN... Receive 0x0 16 272 193 449
|
3 | Receive: 0x8... MPI COMMUN... Receive 0x0 11 11 44 44
|
4 Receive: 0x8... MPI COMMUN... Receive 0x0 174 430 252 508
|
Rocaiua: Ov8 MPICOMMUIN Racai ovn 130 305 151 an7

communications

<value optimized out>
—1065353216
<value optimized out>

[ErFX]

@&

Visualise data

structures

arm

Multi-dimensional Array Viewer

What does your data look like at runtime?

* View arrays

« On a single process
« Or distributed on many ranks

* Use metavariables to browse the array
- Example: Si and Sj
- Metavariables are unrelated to the variables in your
program.
- The bounds to view can be specified
- Visualise draws a 3D representation of the array

e Data can also be filtered
- “Only show if”: Svalue > 0 for example Svalue being
a specific element of the array

13 Confidential © 2018 Arm Limited

Multi-Dimensional Array Viewer

Array Expression: | tables[$il[$]] |~] | Evaluate |
Distributed Array Dimensions: How do | view distributed arrays? Cancel
Staggered Array What does this do? «| Align Stack Frames
Range of $i Range of $j | Auto-update
To: 11 EH = 1 =
-~ -
"] Only show if: | See Examples
Data Table | Statistics |
=) Goto ¥4 visualize [Export . Full Window
i -
0 1 7 3 4 5 6 7 8 9 10 11
io W 2[3[o S| e 7 8 o 10] 11 12
i 2 4 6 8| 10| 12| 14| 16| 18| 20| 22| 24
7 3 6 9] 12| 15| 18
3 4 8| 12| 16| 20| 24
4 5| 10| 15| 20{ 25| 30
5 6| 12| 18| 24| 30| 36
6 7| 14| 21| 28| 35| 42
7 8| 16| 24| 32| 40| 48
8 9| 18| 27| 36| 45| 54
9 10| 20f 30| 40| 50/ 60
| 10 11| 22| 33| 44| 55| 66
Help %\“w i

arm

MAP: Production-scale application profiling

|dentify bottlenecks and rewrite code for better performance

Run with the representative workload you started with
Measure all performance aspects with Arm Forge Professional

Examples:

$> map -profile mpirun -n 48 ./example

Profiled: clover_leaf on 32

Step time
0c0s

15:28:37-15:33:46 (309.138s): Main thread compute 0.2 %, OpenMP 80.0 %, MPI 19.7 %, OpenMP overhead 0.1 %, Sleeping 0.1 %

4 nodes, 32 cores (1 per process) Sampled from: Wed Nov 9 2016 15:28:37 (UTC) for 309.1s

r—— _

Iterations / s

Hide Metrics...

7 hydro 190 x

3.2%

51.2%

Zoom % O

Time spent on line 75 Ll
+ Breakdown of the 51.2% time spent on this line:
0

73 ALL flux_calc() i
74 !
75 CALL advection()

76

3.3%

77 ALL reset_field()
e

Input/Output | Project Files OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks
Total core time ~ MPI Overhead Function(s) on line

14

= 7 clover_leal

Confidential © 2018 Arm Limited

advection_module:advection

7 Calling other functions 100.0% e——

N0

Profiled: My_code.exe on 64 processes Started: Fri Sep 20 14:59:09 2013 Runtime: 355 Time in MPI: 45% Hide Metrics...
Memory usage (M) -
94 - T8 (454.6avg) P —
MPI call duration (ms)
0 - 55751 (34l0avg) é é
— i
CPU floating-point (%) S ttafe Ba. 2 . =it Sl L ot ,
o - w0 (B2avg) e - 7 N . B e
14:59:09-14:59:44 (range 34.773s): Mean Memory usage 454.6 M; Mean MPI call duration 341.0 ms; Mean CPU floating-point 8.2 %; "ﬂmg Reset I

7 My codetoo @ |

153

module wall_excitation (._..n)
!

[MODULE EXCITATION
!

- module derivative [...e)
'

use data_mc

use wall_excitation

implicit none

include ‘mpif.h'

double precision :: max_omx_dt,max_omy_dt,max_omz_dt,t, time_cal

integer :: option,i,],k,nn, fwent, count_max, counter, ios,next_file_at,W_cnt(1:4)
character+*30 :: str,file_type,str_t,num_2_str

call MPI_INIT(ierr)
call MPI_COMM_SIZE (MPI_COMM_WORLD, npro, ierr)

Input/Output | Project Fies Parallel Stack View |

Parallel Stack View

Total Time

63.0% | A

16.9% sl 5.3%
12.8% . 63%
18%
1.5%| 1.4%
A%l |

. /_cod
. call mod_rank_read_file_all_its_own(str,nn, ios) ' Restart from last checkpoint My_code.r90:297

* velocity_solver call velocity_solver My_code.f90:337
<unknown> <anknown> (no debug info)
vel_vort_3d fp_ call cell_identifier My_code.f90:190

#91 others

How MAP is different

MAP’s flagship feature is lightweight, highly scalable performance profiling

15

Confidential © 2018 Arm Limited

Adaptive

sampling

Thread

profiling

Integrated

Sample
frequency
decreases over
time

Same scalable
infrastructure as
Allinea DDT

Categorizes
instructions
sampled

Core-time not
thread-time
profiling

Part of Forge
tool suite

Data never
grows too much

Merges sample
data at end of
job

Knows where
processor spends
time

Identifies lost
compute time

Zoom and drill
into profile

Run for as long
as you want

Handles very
high core counts,
fast

Shows
vectorization
and memory

bandwidth

Detects OpenMP
issues

Profiling within
your code

arm

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Commercially supported
by Arm

O

Accurate and astute
insight

5%

Relevant advice
to avoid pitfalls

16 Confidential © 2018 Arm Limited

Gathers a rich set of data

- Analyses metrics around CPU, memory, 10, hardware counters, etc.
- Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

- Analyses data and reports the information that matters to users
- Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users” workflows

- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (e.g. continuous integration)
- Can be automated completely (no user intervention)

arm

Arm Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /
arm =i .
PERFORMANCE ./Bin/low_freq/../../../../Input/input_250x125_corner.nml | A breakdown of the 16.2% 1/0 time:

REPORTS 2 noc.ies (8 physical, 8 logical cores per node) Time in reads 0.0% |
15 GiB per node
16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% N
node-1 .
Thu Jul 9 2015 10:32:13 Effective process read rate 0.00 bytes/s |
;65/ 57§°"d5 (about 3 minutes) Effective process write rate 1.38 MB/s I

in/../Src

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

- Time spent running application code. High values are usually good.
Com pUte 20.6% This is very low; focus on improving MPI or 1/O performance first
63.2 Time spent in MPI calls. High values are usually bad.
M PI -2% _ This is high; check the MPI breakdown for advice on reducing it
0 16.2% . Time spent in filesystem 1/0. High values are usually bad.
I/ : This is average; check the |/0 breakdown section for optimization advice

17

Confidential © 2018 Arm Limited q r m

Arm Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report.

CPU

Multi-threaded
parallelism

Single-core code
OpenMP regions

Scalar numeric ops

Vector numeric ops

A breakdown of the 91.2% CPU time:

30.6% H

Memory accesses

The per-core performy
identify time-consum
performance.

No time is spent in v
compiler's vectorizat]
be vectorized.

MPI

Of the 41.3% total time spentin MPI calls:

Time in collective calls

Time in point-to-point calls
Estimated collective rate

Estimated point-to-point rate

All of the time is spent in col
This suggests a significant I
synchronization overhead. Y

MPI profiler.

/O

A breakdown of how the 53 9% total I/O time was spent:

Time in reads

Time in writes Me mory

Est!mated rejad rael per-process memory usage may also affect scaling:
Estimaiad write rat Mean process memory usage 160 Mb I

Most of the time is § Peak process mem

transfer rate. This nf Lustre

inefficient access p4
write calls are affect

Peak node memory|

The peak node mer| Lustre file operations (per node)

18 Confidential © 2018 Arm Limited

100.0% | the total number of)
0.0% | Loa d processes and mord Mean write |
e Peak wiite f Energy
4.07 H
07 bytes/s - imbalance Mean fle o
0 bytes/s | A breakdown of how the 32.3 Wh was used:
M tad
ean metad 61.0% W
OpenMP System 38.1%
A breakdown of the 99.5% time in OpenMP regions: OMP Mean node power 94.1 W [N
r 98.0
Computation 58.9% [l) Peak node power g.ow I
Synchronization 41.1% W effl(]ency Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.
Physical core utilization 100.0% M
- System
System load 99.7% 1N

Significant time is spent synchronizing threads in parallel regions.

Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP

regions in tight loops) or workload imbalance.

usage

arm

VI-HPS and the tools ecosystem

See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

W'I'l S VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Tools
Guide

October 2017

19 Confidential © 2018 Arm Limited

KCACHEGRIND

PAPI

MEMCHECKER /
SPINDLE / SIONLIB

MAP/PR / MPIP /

O|SS / MAQAO
et
é Hardware
— monitoring
Debugging, %
error & anomaly :
detection JUBE
Execution

&

Automatic
profile & trace
analysis

&

Visual trace
analysis

YL

Optimization

TAU EXTRA-P PERISCOPE

SCORE-P /
EXTRAE

PTF /
RUBIK /

F MAQAO

arm

Arm Forge Quick Start |
Tool cheat sheets

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

Arm DDT cheat sheet

Start DDT interactively, remotely, or from a batch script.

Load the environment module:
S module load forge

Prepare the code:
S mpicc -00 -g myapp.c -0 myapp.exe
S mpfort -00 -g myapp.f -o myapp.exe

Start DDT in interactive mode:
S ddt mpirun -n 8 ./myapp.exe argl arg2 ...

* Or use reverse connect:
On the login node:
Sddt &
(or use the remote client)
Then, edit the job script to run the following command and submit:
ddt --connect mpirun -n 8 ./myapp.exe argl arg?2 ...

21 Confidential © 2018 Arm Limited q r m

Run DDT in offline mode

Run the application under DDT and halt or report when a failure occurs.

* You can run the debugger in non-interactive mode

« For long-running jobs
- For automated testing, continuous integration...

* To do so, use the following arguments:

- S ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe
--offline enable non-interactive debugging
--output specifies the name and output of the non-interactive debugging session

Html
Txt
« Add --mem-debug to enable memory debugging and memory leak detection

22 Confidential © 2018 Arm Limited

arm

DDT command line options

$ ddt —-help
Arm Forge 18.2.1 - Arm DDT

Usage: ddt [OPTION...] [PROGRAM [PROGRAM_ARGS]]
ddt [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

——connect Reverse Connect (launch as a server and wait)
—-attach=[host1l:]pidl, [host2:]pid2... [PROGRAM] attach to PROGRAM being run by list of host:pid
——attach-mpi=MPI_PID [--subset=rankl,rank2,rank3,...] [PROGRAM] attach to processes in an MPI program.
——break-at=LOCATION[,START:EVERY:STOP] [if CONDITION] set a breakpoint at LOCATION
——trace-at=LOCATION[,START:EVERY:STOP],VAR1,VAR2, ... set a tracepoint at LOCATION

——cuda enable CUDA

——mem—-debug [=(fast|balanced|thorough|off)] configure memory debugging (defaults to fast)
——mpiargs=ARGUMENTS command line arguments to pass to mpirun

-n, ——np, ——processes=NUMPROCS specify the number of MPI processes
——nodes=NUMNODES configure the number of nodes for MPI jobs
——procs—per—-node=PROCS configure the number of processes per node
——offline run through program without user interaction
-s, ——silent don't write unnecessary output to the command line

23 Confidential © 2018 Arm Limited q r m

Arm MAP cheat sheet

Generate profiles and view offline

Load the environment module
S module load forge

Prepare the code
S mpicc -00 -g myapp.c -0 myapp.exe
S mpfort -00 -g myapp.f -0 myapp.exe

Offline: edit the job script to run Arm MAP in “profile” mode
S map --profile mpirun ./myapp.exe argl arg2

View profile in MAP:

On the login node:
S map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
(or load the corresponding file using the remote client connected to the remote system or locally)

24 Confidential © 2018 Arm Limited q r m

MAP command line options

$ map ——help
Arm Forge 18.2.1 - Arm MAP

Usage: map [OPTION...] [PROGRAM [PROGRAM_ARGS]]
map [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
map [OPTION...] [MAP_FILE]

——connect Reverse Connect (launch as a server and wait for the GUI to connect)
——cuda-kernel-analysis Analysis of the CUDA kernel source code lines

——Llist-metrics Display metrics IDs which can be explicitly enabled or disabled.
——disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
——enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
——export=FILE.json Exports a specified .map file as JSON

——export—-functions=FILE Export all the available columns in the functions view to a CSV file (use ——profile)
——select-ranks=RANKS Select ranks to profile.

——mpiargs=ARGUMENTS command line arguments to pass to mpirun

-n, ——np, ——processes=NUMPROCS specify the number of MPI processes

——nodes=NUMNODES configure the number of nodes for MPI jobs

——procs-per—-node=PROCS configure the number of processes per node

——profile run through program without user interaction

25 Confidential © 2018 Arm Limited q r m

Arm Performance Reports cheat sheet

Generate text and HTML reports from application runs or MAP files

Load the environment module:
S module load reports

Run the application:
perf-report mpirun -n 8 ./myapp.exe

... or, if you already have a MAP file:
perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

Analyze the results
$ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
S firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

26 Confidential © 2018 Arm Limited q r m

Performance Reports command line options

$ perf-report ——help
Arm Performance Reports 18.2.1 - Arm Performance Reports

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] MAP_FILE

——Llist-metrics Display metrics IDs which can be explicitly enabled or disabled.
——disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
——enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
——mpiargs=ARGUMENTS command line arguments to pass to mpirun

——nodes=NUMNODES configure the number of nodes for MPI jobs

-0, ——output=FILE writes the Performance Report to FILE instead of an auto—-generated name.
-n, ——np, ——processes=NUMPROCS specify the number of MPI processes

——procs-per—-node=PR0OCS configure the number of processes per node for MPI jobs
——select-ranks=RANKS Select ranks to profile.

27 Confidential © 2018 Arm Limited q r m

The Forge GUI and where to run it

DDT and MAP provide powerful GUIs that can be run in a variety of configurations.

|~ On the head node

Remote client N
/ (interactive mode + reverse connect)

(remote launch + reverse
connect)

| _—— On the compute node
(offline OR interactive mode)

Ultimately, that’s where the tools will run.
But what about the GUI?

28 Confidential © 2018 Arm Limited q r m

Launching the Forge Remote Client

The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client
- Open Forge Remote Client
- Create a new connection: Remote Launch =» Configure =» Add
- Hostname: <username>@<hostname>
- Remote installation directory: </path/to/arm-forge/X.Y/>
- Connect!

29 Confidential © 2018 Arm Limited q r m

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Arm Forge 18.1.2 and MVAPICH2

* To use DDT’s memory debugging features, set the environment variable
MV2 ON_DEMAND_ THRESHOLD to the maximum job size you expect. This setting
should not be a system wide default; it should be set as needed.

* Tousemplrun_rsh with DDT, from File > Options go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add —
hostfile <hosts>, where <hosts> isthe name of your hosts file, within the
mpirun_rsh arguments field in the Run window.

* To enable message Queue Support MVAPICH 2 must be compiled with the flags
——enable-debug ——enable-sharedlib. These are not set by default.

* MVAPICH2 MPI programs cannot be started using Express Launch syntax.
- Douse: “ddt ./a.out” and configure MPI launch parameters in the GUI.

30 Confidential © 2018 Arm Limited q r m

Interactive De
Crash and hang

+

+

Confidential © 2018 Arm Limited

+

+

+

arm

C=AxB+C

Simply multiply and add two matrices

Algorithm

1. Rank O (RO) initialises matrices A, B & C

2. RO slices the matrices A & C and sends
them to Rank 1...N (R1+)

3. RO and R1+ perform the multiplication
R1+ send their results back to RO
5. RO writes the result matrix C to file

32 Confidential © 2018 Arm Limited

arm

Fix a simple crash in a MPI code

Simple matrix multiply and add? No problem! Except that it crashes...

Exercise Outline Initial Result: Crash!

e ObjECtIVES) johlino2@johlin02-VM: ~/MUG18/01_walkthrough/1_crash
johlin02@johlin02-VM:~/M 91_walkthrough/1_crash$ make
H Pm d i -g -ffast-math - DDEBUG -std=c99 mmultl.c -o mmultl c.exe -1m
° DISCOVGI’ Arm DDT S Interface mpif9@ -g -ffast-math -DDEBUG -cpp mmultl.f9@ -o mmultl_f90.exe -1m
johlin02@johlin®2-VM:~/MUG18/01_walkthrough/1_crash$ mpirun -np 4 ./mmultl_c.exe
H H H : 0: Size of the matrices: 64x64
- Interactively debug a crash in a MPI application R S

@8: Sending matrices...

@: Processing...
bt commands [johlin@2-vM:mpi_rank_@][error_sighandler] Caught error: Segmentation fault (signal
3: Receiving matrices...

2: Receiving matrices...

$ ma ke 1: Receiving matrices...

2: Processing...

[johlin@2-VM:mpi _rank 2][error_sighandler] Caught error: Segmentation fault (signal 11)

1 _— 1: Processing...
$ mplrun np 4 " /mmu-l'tl—c . exe [johlin@2-VvM:mpi_rank_1][error_sighandler] Caught error: Segmentation fault (signal 11)
Observe crash
$ ddt " /mmu -l'tl—c " exe CLEANING UP REMAINING PROCESSES
YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
Observe Cause Of CraSh YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)

This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions
johlin®2@johlin@2-VM:~/MUG18/01_walkthrough/1_crashs S [}

BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
PID 9160 RUNNING AT johlin®2-VM
EXIT CODE: 139

33 Confidential © 2018 Arm Limited q r m

Answer: Fix incorrect limits on k-loop

Incorrect limits lead to invalid memory access

Before After

164 do 1=0,size/nslices-1 164 do i=0,size/nslices-1

165 do j=0,size-1 165 do j=0,size-1

166 res=0.0 166 res=0.0

167 do k=size,sizexsize 167 do k=0,size-1

168 res=A(ixsize+k)*B(kxsize+j)+res 168 res=A(ixsize+k)*B(kxsize+j)+res
169 end do 169 end do

170 C(ixsize+j)=res+C(ixsize+j) 170 C(ixsize+j)=res+C(ixsize+j)

171 end do 171 end do

172 end do 172 end do

34 Confidential © 2018 Arm Limited q r m

Answer: Fix incorrect limits on i-loop

Incorrect limits on i-loop lead to unmatched MPI_Send

Before After

73 do i=1,nproc-2 73 do i=1,nproc-1

74 call MPI_Send(mat_a(slicexi), slice, & 74 call MPI_Send(mat_a(slicexi), slice, &
MPI_DOUBLE, i, 100+i, & MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, sizexsize, & 75 call MPI_Send(mat_b, sizexsize, &
MPI_DOUBLE, i, 200+i, & MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slicexi), slice, & 76 call MPI_Send(mat_c(slicexi), slice, &
MPI_DOUBLE, i, 300+i, & MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

77 end do 77 end do

35 Confidential © 2018 Arm Limited q r m

Improve performance |
Efficient memory access
Confidential © 2018 Arm Limited q r m

Fix inefficient memory access pattern

It works! But wow it’s slow.

Exercise Outline

* Objectives

- Discover Arm MAP’s interface

- Gather initial profiles of a MVAPICH2 application
¢ Commands

$ make

$ map —profile -n 4 \
./mmult2_f90.exe

$ map mmult2_f90_4p*x.map
Observe profile

37 Confidential © 2018 Arm Limited

Initial Result: SLOW

johlino2@johlin02-VM: ~/MUG18/01_walkthrough/2_memory_accesses
johlin02@johlin®2-VM: ~/MUC _walkthrough/2_memory_accesses$ map --profile -n 4 ./mmult2_f90.exe

Profiling : [home/johlin@2/MUG18/01_walkthrough/2_memory_accesses/mmult2_f90.exe
Allinea sampler : not preloading

MPI implementation : Auto-Detect (MVAPICH 2)

* number of processes : 4

* number of nodes o

* Allinea MPI wrapper : not preloading

: Receilving matrices...

: Size of the matrices:

: Receilving matrices...

: Receilving matrices...

: Initializing matrices...
: Sending matrices...

: Processing...

: Processing...

: Processing...

: Processing...

: Sending result matrix...
: Sending result matrix...
: Sending result matrix...
: Receilving result matrix...
: Writing results...

: Done.

il
0
2
2]
0
0
1
2
0
&
2
1
&
0
0
0

MAP analysing program...

MAP gathering samples...

MAP generated fhome/johlin®2/MUG18/01_walkthrough/2_memory_accesses/mmult2_f90_4p_1in_2018-08-05_23-0
2.map

johlin02@johlin®2-VM: ~ /MU walkthrough/2_memory

arm

Initial profile
Find the hotspot: look for the line with the highest core time.

— Ed‘ .l }'ID'S(05_23-02.map - Arm MAP - Arm Forge 18.2.1
Profiled: mmult2 f90.exe on 4 processes, 1 node Sampled from: Sun Aug 5 2018 23:02:02 (UTC-04) for 5.28 Hide Metrics...
B T
CPU floating-point 1 ke & s d = - & c:lE F .. B =
17.0% o iR i RS e gd IR T=HSFSY . Time spent on line 168 ®
| B)
164 © do i=0,size/nslices-1 Breakdown of the 62.2% time spent on this line:
165 EH do j=0,size-1 Executing instructions 100.0% I
:2'_5_ g IES;OI&IG i . Calling other functions 0.0%
167 do k=0, size-
62.2% JINE. 168 Tes A (i size k) B(F M n instructions executed:
169 end do Scalar floating-point 0.0%
0.4% , | 170 C{i*size+j)=res+C(i* Vector floating point 27.0% I
171 end do Scalar integer 3.6%H
: 7 ::' Enc :] 0 Vector integer 0.0%
— Memory access* 78.4% I
|| Inputsoutput | Project Fles |~ Main Thread Stacks | _Functions | ~ Branch
e Other instructions 0.0%

Total core time A MP Function(s) on line Source
¢ mmult2 rogran

i * 69.1% memory access instructions, 9.3% implicit memory accesses in other

= mmult linined]

62.2% N

0.4% = v 1 other H H M 4 4
233% —33% | mp.fnalze. instructions, also counted in their categories
7.5% . = mwrite [infined]

2.6%4 2.6% mpi_recy nk, MPI_CC

1.2% F] 1.2% mpi_send_ rank, MPI_CO

2.7%a . # 11 others

Showing data from 988 samples taken over 4 processes (247 per process) Arm Forge 18.2.1 & Main Thread View

38 Confidential © 2018 Arm Limited q r m

Memory access patterns

e Data locality
- Temporal locality: use of data within a short time of its last use
- Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {
for (loop=0; loop < 10; loop++) {
.= .o X[1] ..

}

Spatial locality example
for (i=0 ; i < N*s; i+=s) {
.= . X[1] ..

}

39 Confidential © 2018 Arm Limited

arm

Memory Accesses and Cache Misses

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[i*n+]]=..

i=0,n=4 A

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[F*n+i]=..

40 Confidential © 2018 Arm Limited q r m

Answer: Transpose matrix and interchange loops

Transposing the matrix improves locality = performance

Before

164
165
166
167
168
169
170
171
172

do i=0,size/nslices-1
do j=0,size-1
res=0.0
do k=0,size-1
res=A(ixsize+k)*B(k*size+j)+res
end do
C(iksize+j)=res+C(ixsize+j)
end do
end do

41 Confidential © 2018 Arm Limited

After

165 do i=0,size/nslices-1

166 do j=0,size-1

167 res=0.0

168 do k=0,size-1

169 res=A(ixsize+k)*transB(j*size+k)+res
170 end do

171 C(iksize+j)=res+C(ixsize+j)

172 end do

173 end do

arm

Final profile
About 3x faster

Before
. —

CPU floating-point e - _ - iL L .

0% R | LT IR T P N T o T AN EEEE r L e o

42 Confidential © 2018 Arm Limited q r m

Leak Detection
... and DDT in Offline Mode

+

+

Confidential © 2018 Arm Limited

+

+

+

+

+

R

arm

Possible memory leak

Transpose is working great, but sometimes | run out of memory?

Exercise Outline

* Objectives

- Use DDT in offline mode

- Explore DDT’s report logbook
* Commands

$ make

$ ddt ——offline \
——output=report.html \
-n 4 \
/mmult3_f90.exe

$ xdg—-open report.html
Observe report

44 Confidential © 2018 Arm Limited

DDT in offline mode (--offline)

johlino2@johlin02-VM: ~/MUG18/01_walkthrough/3_memory_leak

johline2@johlin02-VM:~/ 1_walkthrough/3_memory_leak$ ddt --offline --output=report.html --mem-
debug -n 4 ./mmult3_f90.

Arm Forge 18.2.1 - Arm DDT

Debugging : [home/johlin@2/MUG18/01_walkthrough/3_memory_leak/mmult3_f90.exe
MPI implementation : Auto-Detect (MVAPICH 2)

* number of processes : 4

* number of nodes zjll

Memory debugging enabled : Yes

* setting : Fast

* check bounds : Off

: Size of the matrices:

: Initializing matrices...
: Receiving matrices...

: Receiving matrices...

: Receilving matrices...

: Sending matrices...

: Processing...

: Processing...

: Processing...

: Processing...

: Sending result matrix...
: Sending result matrix...
: Receilving result matrix...
: Sending result matrix...
: Writing results...

: Done.

0
0
1l
2
z)
0
1
2
0
z)
1
2
0
z
0
0

offline log written to: '/home/johlin®2/MUG18/01_walkthrough/3_memory_leak/report.html’

johlin02@johlin®2-VM:~/MUG18/01_walkthrough/3_memory_leak$ xdg-open report.html

arm

DDT Debugging Report

Use DDT's reporting feature to debug long-running applications

& C | ® filey//fhome/johlin02/MUG18/01_walkthrough/3_memory_leak/report.html#leaks v Q© B O M O : &« C | @ file:///home/johlin02/MUG18/01_walkthrough/3_memory_leak/report.html#leaks v QO B O N O
W Arm 2 HalHigdonTrair [Mail-John.Linf: [P Calendar-John & Mission Contro!l Issue Navigato I Other bookmarks M Arm 2 HalHigdonTrair [P Mail-John.Linfc [P Calendar-John § Mission Contro! § Issue Navigato M Other bookmarks
report I°g book Messages Tracepoints Memory Leak Report Output
Debugging /homeljohlin02/MUG18/01_walkthrough/3_memory_leak/mmult3_f90.exe .
Tracepoints
Messages Tracepoints Memory Leak Report Output No tracepoints set or hi.
Messages Tracepoints Memory Leak Report Output

Messages
[+] Expand All [-] Collapse All Memory Leak Report
[Type| Time |Processes Mossage Tw'h:r;et;::r; mﬂmﬁ memory when the program finished ing. Clicking an item in the bar chart below will show additional details about the allocations, including
1 \.) 0:00.000(0-3 Launching program /home/johlin02/MUG18/01_walkthrough/3_memory_leak/mmult3_f90.exe All 4 ranks:

at Sun Aug 5 23:21:56 2018 i L d

Executable modified on Sun Aug 5 23:21:46 2018 egen
2 | &) |002621[03 Startup complete. Rank 0: 151.18 M8 [B mmuit3 (mmuit3.190:62)

Rank 1: 173.39 kB [other

3 0:02.623 |n/a Select process group All Rank 2: 173.39 kB
4 Additional Information Rank 3: 173.39 kB

v Stacks

Processes Function Source Variables 2

mmult3 (mmult3.f90:17) » call MPI_COMM RANK(MPI COMM WORLD, myrank, ierr) » Rank 0, thread 1 Allocation data can also be exported to CSV format.

» Current Stack
& i) 0:04.809 [n/a Debugging : /home/johlin02/MUG18/01_walkthrough/3_memory_leak/mmult3_f90.exe -

MPI implementation : Auto-Detect (MVAPICH 2) Messages Tracepoints Memory Leak Report Output

* number of processes : 4

* number of nodes : 1 Output

Memory debugging enabled : Yes P

* setting : Fast 0:s f the mat : 3072 3072

* check bounds : Off 0 : I;i:iglizizgm:a;:ﬁ:s. .o xl : Receiving matrices...

X 2 : Receiving matrices...
6 b 0:04.809(0-3 Play 3 : Receiving matrices... @ : Sending matrices... 1 : Processing... 2 : Processing...
0@ : Processing... 3 : Processing... 1 : Sending result matrix...
7| © |0:42.396(0-3 Program stopped at exit. 2 : Sending result matrix... ® : Receiving result matrix... 3 : Sending result matrix...
0 : Writing results... 0 : Done.
2 Additional Information -
45 Confidential © 2018 Arm Limited

arm

View the memory leak report to see unfreed allocations

Allocations that are not freed when the program exits could be leaks

Click allocation to see function source

All 4 ranks:
Legend

Rank 0: 151.18 MB S P mmult3 (mmult3.f90:62)
Rank 1: 173.39 kB Other

Rank 2: 173.39 kB

Rank 3: 173.39 kB

Source
v allocate(mat b(0:size*size-1))
59. if(myrank==0) then
60. allocate(mat_a(0:size*size-1))
61. allocate(mat_b(0:size*size-1))
62. allocate(mat c(0:size*size-1))
63.
64. print *,myrank,": Initializing matrices..."

46 Confidential © 2018 Arm Limited

Review source code to verify leak

[reportlogbook A WA sohn
< C O filey///home/fjohlin02/MUG18/01_walkthrough/3_memory_leak/report.html#leaks * © @ O N O :

W Arm } HalHigdonTrair [P Mail-John.Linf: [P Calendar-John § Mission Contro! § Issue Navigato B Other bookmarks

Memory Leak Report

This report shows unfreed memory allocations when the program finished executing. Clicking an item in the bar chart below will show additional details about the allocations, including
where they were allocated.

All 4 ranks:
Legend
Rank 0: 151.18 MB [B mmuit3 (mmult3.f90:62)
Rank 1: 173.39 kB Other
Rank 2: 173.39 kB
Rank 3: 173.39 kB

Allocation data can also be exported to CSV format.

Largest allocation call path at [mmuilt3 (mmuit3.f90:62)] on [rank 0]:
1 unfreed allocation (75.50 MB in total)

Function Source
#0 mmult3 (mmult3.f90:62)

v allocate(mat_b(0:size*size-1))

59. if(myrank==0) then

60. allocate(mat_a(0:size*size-1)) |
61. allocate(mat_b(0:size*size-1))

62. allocate(mat_c(0:size*size-1)) |

rint *,myrank,": Initializing matrices...” |

#1 main (mmult3.f90:2) » use mpi
#2 _ libc_start_main (libc-start.c:291)

#3 _start

-

. Memory Debugging

Allocation tracking and guard pages

Confidential © 2018 Arm Limited

arm

Three levels of heap debugging overhead

48

Confidential © 2018 Arm Limited

basic

eDetect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence

*Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect

*Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness

eMemory usage,
statistics, etc.

free-blank

eOverwrite the bytes of
freed memory with a
known value.

alloc-blank

elnitialise the bytes of
new allocations with a
known value.

check-heap

*Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy

eAlways copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

check-blank

*Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs

*Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

See user-guide:
Chapter 12.3.2

arm

Tri-diagonal solve: segmentation fault

Crashing with invalid memory reference. Sounds like a job for a memory debugger!

Exercise Outline Invalid memory access

e Objectlves %]]ohlinOZ@johlinOZ -VM: ~/MUG18/03_mem_debugging

]ohllno [a]ohltnoz VM: 3_mem_debugging$ make
-g -0 mod .0 mod_trisol.f90

- Use DDT’s memory debugging features 119 - -g -03 -o trisol.o trisol.F90

gendata.o gendata.f90

solve.o solve.f90

- Use guard pages to find out-of-bounds access 1f90 -c -g -03 -o check.o check. 90

matnrm.o matnrm.f90
o numroc.o numroc.f
-o dlaruv.o dlaruv.f

[J Comma nds -0 trisol.exe mod_trisol.o trisol.o gendata.o solve.o check.o matnrm.o numroc.o dlaruv.o

Johl\n@l[d]ohhnoz VM:~/MUG18/03_mem_debugging$ mpirun -n 4 ./trisol.exe
$ ma ke Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:

$ ddt _n 4 . /t r‘iso-l_ . exe Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Enab-l_e fa St memo ry debugg ing Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:

DO M enab-l-e gua rd pages Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

AC[mpiexec@johlin®2-VM] Sending Ctrl-C to processes as requested
[mpiexec@johlin@2-VM] Press Ctrl-C again to force abort
johline2@johlin@2-VM:~/MUG18/03_mem_debugging$ []

49 Confidential © 2018 Arm Limited q r m

DDT’s heap memory debugging framework

Dynamically linked binaries

e LD _PRELOAD is usually used automatically

* Not on static binaries, not on all Crays or old SLURMs

50

e If not, manual linking is required

LFLAGS = -dynamic -L/path/to/forge/lib/64/ -zmuldefs -W1l,--undefined=malloc -1ldmalloc

Run: mpirun -n 8 ./mmult2 c.exe
Command: mpirun -n 8 ./mmult2_c.exe
OpenMP
v CUDA: Track allocations: enabled, Detect invalid accesses: disabled

v Track GPU allocations (also enables CPU memory debugging)
Detect invalid accesses (memcheck)

¥ Memory Debugging: Fast, 1 guard page after, Backtraces, Preload
Plugins: none

Help |Options

When manual linking is used,

Details

Details

Details...
Details

Caon . quit

untick “Preload” box

Confidential © 2018 Arm Limited

I v/ Preload the memory debugging IibrarylLanguage: [C++, threads :}

A

-

Note: Preloading only works for programs linked against shared libraries. If

your program is statically linked, you must relink it against the dmalloc

library manually.
Heap Debugging
Fast Balanced

Enabled Checks: |basic

Thorough Custom

| More Information

Heap Overflow/Underflow Detection

v/ Add guard pages to detect out of bounds heap access
Guard pages: Agd guard pages: After :
Advanced

Check heap consistency every @ heap operations

v/Store stack backtraces for memory allocations
Only enable for these processes:

[100% | Select All || x2 |[x0.5 || 1%

help

arm

It works in DDT?????

The code appears to run fine when launched from the debugger! Why?

DDT launch configuration
oo

Application: /home/johlin02/MUG18/03_mem_debugging/trisol.exe Details
. Application: johlin02/MUG18/03_mem_debugging/trisol.exe v | a |
Arguments: (v |
stdin file: v | 8
|
! Working Directory: | Memory Debugging Options
3
¥/ MPI: 4 processes, MVAPICH 2 + Preload the memory debugging library Language: | C++, threads :
Number of Processes: | 4 B Note: Preloading only works for programs linked against shared libraries. If your
= ‘4l program is statically linked, you must relink it against the dmalloc library
Implementation: MVAPICH 2 | Change... | manually.
Heap [
mpirun arguments |
= Fast Balanced Thorough Custom
OpenMP =
3
cuba Enabled Checks: | basic More Information

E
¥ Memory Debugging: Fast. No guard pagts; OverflowfUndesflow Detection
Submit to Queue
Environment Variables: none

-
4 Guard pages: | +{ Add guard pages

Plugins: none
| Advanced

+| Store stack backtraces for memory allocations
Only enable for these processes:

1=

Help || Options |

51 Confidential © 2018 Arm Limited

Add guard pages to detect out of bounds heap access

Check heap consistency every | :{ heap operations

x2 x0.5 1%

(o[

|

Uh oh, program output looks great

It should have crashed! What changed?

| Input/Output | Breakpoints] Watchpoints] Stacks] Tracepoints] Tracepoint Output] Logbook |

Input/Output

*** Splution correct
|x| / (sgrtin)*epsilon*{|a|*|x| + |b|) = 6.6245D-07

All processes finished.

[c_;. Every process in your pregram has terminated - would you like to
\‘) restart this session from the beginning?

arm

Guard pages (aka “electric fences”)
I I O N

| | | | | GUARD | GUARD
4 kBytes MEMORY ALLOCATION PAGE PAGE
(typically) :

| | | |

GUARD GUARD

PAGE PAGE MEMORY ALLOCATION

* A powerful feature...:

* Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

e ...tobe used carefully:
* Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

* Beware the additional memory usage cost

52 Confidential © 2018 Arm Limited a r m

OK, this time enable guard pages

The code appears to run fine when launched from the debugger! Why?

Add one guard page after every allocation Gotcha! Write OOB at res(k+2)

¥| Preload the memory debugging library Language: [C++. threads]]

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library

manually.
Heap Debugging F trisol.fo0 X F check.foo X |
Fast] Thoraugh Custom I3 REAL (KIND(1.0D0)), ALLOCATABLE :: res(:), temp(:)
iz
ED ' ' ' ' = 13
Enabled Checks: | basic More Information 1 ':1 : Initialise
16
Heap Overflow/Underflow Detection 17 n = SIZE(a,1) Program Stopped
18 ALLOCATE (res(n),temp(n .
+| Add guard pages to detect out of bounds heap access 19 - . ((n) p(n}) Processes 0-3:
. =] . 20 B IF (me.LE.0) THEN . I
Guard pages: Add guard pages: = femp - b Memory error detected in check (check.f90:27):
22 ELSE . .
——Ravanced = temp - ZERO read/write beyond end of allocation
Check heap consistency every :E] heap operations ‘i END IF Suppress memory errors from this line in future

26 B DO k = 0, block_size l B> Continue l i Pause l

¥ Store stack backt fol llocati
ore stack backtraces for memory allocations = Tes (k9] - k-2 |
Only enable for these processes: 28 END DC
29

| 100% [Select All | [x2 |[x0.5 |[1%

[o [coneel |

53 Confidential © 2018 Arm Limited q r m

4 4 4 4 4 4 4 4 4
4 + 4 + 4 4 + 4 4
+ 4 4 4 4 + + 4 4
4 gg 4 4 4 4 4 4 4
4 + 4 + 4 + + 4 +
B B + B + B B + B
+ + + + + + + + +

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

Can we improve 1/O performance?

RO responsible for all file I/O after R1+ return results. Surely we can do better?

Exercise Outline

55

Objectives
« Use MAP’s I/O profiling features

- Use performance reports to quantify speedup

Commands
$ make

$ map —profile -n 4 \
/mmult5_ f90.exe

$ perf-report mmult5_1f90_4px*x.map
$ xdg—open mmult5_f90_4px.html

Confidential © 2018 Arm Limited

Performance report shows MPI bound

/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance/mmults_fo0.exe ~ COMPute
1 node (2 physical, 2 logical cores per node)

arm 4 processes
PERFORMANCE johlin02-VM
REPORTS Mon Aug 6 2018 00:37:12 (UTC-04))
13 seconds
/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance MPI

Summary: mmult5_f90.exe is MPI-bound in this configuration

Time spent running application code. High values are usually good.
Com p ute 46.7% - This is low; consider improving MPI or I/O performance first
53.0% Time spent in MPI calls. High values are usually bad.
MPI . - This is high; check the MP1 breakdown for advice on reducing it
I/0 0.3% Time spent in filesystem I/O. High values are usually bad.

This is very low; however single-process I/O may cause MPI wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MP| section below.

arm

Initial profile shows MPI_Finalize dominates

Time spent in MPI_Finalize is due to load imbalance in file I/O

mmult5_f90_4p_1n_2018-08-06_00-37.map - Arm MAP - Arm Forge 18.2.1
File Edit View Metrics Window Help

Profiled: mmult5 f90.exe on 4 processes, 1 node Sampled from: Mon Aug 6 2018 00:37:12 (UTC-04) for 12.6s Hide Metrics...
Main thread activity
- . 100 T = —
CPU floating-point | t.I_IEL# _‘TI'II.T b“ﬁqﬁ&!}lr%@" F. T
2.6% H}(H, ” A ik
0 Jl 1) 1
Memory usage = g ‘
60.8 MB
0 |

00:37:17-00:37:24 (7.541s, 59.8% of total): Main thread compute 25.9 %, MPI 73.6 %, File I/O 0.5 %, Synchronisation %

F mmult5.f90 X

if (myrank==0) then

*,myrank,": Writing results..."
11 mwrite (size, mat_c, filename)
print *,myrank,": Done."

23.6%

e (mat_a)
mat_b)
e (mat_c)

[»]

71.4% S 119 call MPI Finalize (ierr)

(]

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks ®
Total core time A MPI Function(s) on line Source Position
= # mmult4 program mmult4 mmult5.f90:1
71.4% S T mpi_finalize_ call mmult5.f90:119
= mwrite [inlined] call mwrite(size, mat_c, filename) mmult5.f90:111
23.6% #_gfortran_st_set_nml_var_dim, _gfortra... write(12, "(E10.3)", advance="no"), A(i*size+i) mmult5.f90:153
<0.1% , 1 other
2.7%) mmult [inlined] call mmult (size, nproc, mat_a, mat_b, mat_c) mmult5.f90:95
1.9% 4 1.9% mpi_send_ call MPI_Send(mat_c, slice, MPI_DOUELE, 0, 500+myra.. mmult5.f90:106
0.4% , 1 other
Showing data from 1,404 samples taken over 4 processes (351 per process) Arm Forge 18.2.1 2 Main Thread View

56 Confidential © 2018 Arm Limited

arm

Answer: improve scalability of 1/O routines

Use MPI-I0O to let all MPI ranks write their results to file simultaneously.

Before
97 if(myrank==0) then
100 do i=1,nproc-1
101 call MPI_Recv(mat_c(slicexi), slice, &
MPI_DOUBLE, &i, 500+i, &
MPI_COMM_WORLD, st, ierr)
102 end do
103 else
106 call MPI_Send(mat_c, slice, MPI_DOUBLE, &
0, 500+myrank, &
MPI_COMM_WORLD, ierr)
107 end if
109 if(myrank==0) then
111 call mwrite(size, mat_c, filename)
113 endif

57

Confidential © 2018 Arm Limited

After

102

103

104

105
106

call MPI_FILE_OPEN(MPI_COMM_WORLD, &

filename, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierr)
call MPI_FILE_SET_VIEW(fh, &

0_MPI_OFFSET_KIND, MPI_DOUBLE, &

MPI_DOUBLE, 'native’, &
MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE_AT(fh, disp, mat_c, &
slice, MPI_DOUBLE, st, ierr)

call MPI_BARRIER(MPI_COMM_WORLD, ierr)

call MPI_FILE_CLOSE(fh, ierr)

arm

New approach: use MPI-IO for file output

Each MPI rank writes its results to it’s own part of the output file

Before: runtime 13 seconds

arm
PERFORMANCE
REPORTS

/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance/mmults_f0.exe ~ Compute
1 node (2 physical, 2 logical cores per node) |
4 processes !

johlin02-VM
Mon Aug 6 2018 00:37:12 (UTC-04)

13 seconds v
/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance MPI .

Summary: mmult5_f90.exe is MPI-bound in this configuration

Compute 46.7% -
vl sso

110 0.3%

Time spent running application code. High values are usually good.
This is low; consider improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad.
This is high; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad.
This is very low; however single-process I/O may cause MPI wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MP| section below.

58 Confidential © 2018 Arm Limited

After: runtime 5 seconds (2.6x speedup)

arm

PERFORMANCE

REPORTS

/homeljohlin02/MUG18/01_walkthrough/5_MPI_imbalance/solution/mmuilts_fo0.&"Pute

1 node (2 physical, 2 logical cores per node)

4 processes

johlin02-VM

Mon Aug 6 2018 00:34:17 (UTC-04)

5 seconds TN
Ih(:m'eljonlinOZIMUG18/01_walkthroughlS_MPl_imbalancel MPI - e}
solution

Summary: mmulté_f90.exe is Compute-bound in this configuration

compute 7+ |

MPI
I/0

20.1% -

5.3% l

Time spent running application code. High values are usually good.
This is high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.
This is low; this code may benefit from a higher process count

Time spent in filesystem 1/O. High values are usually bad.
This is low; check the I/O breakdown section for optimization advice

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU section below.
As little time is spent in MPI| calls, this code may also benefit from running at larger scales.

arm

Final profile shows balanced 1/0 and compute dominates

New approach is about 3x faster

mmulté

File Edit View Metrics Window Help
Profiled: mmulté fo0.exe on 4 processes, 1 node Sampled from: Mon Aug 6 2018 00:34:17 (UTC-04) for 4.
Main thread activity

CPU floating-point .]

60.7 % B int
0 —_ = =
Memory usage —-
87.6 MB . = %

00:34:17-00:34:21 (4.834s): Main thread compute 74.2 %, MPI 20.1 %, File /O 5.3 %, Synchronisation 0.4 % Zoom &] =0

¥ mmult6.fo0 X Time spent on line 96 B ®

size size 1))

- - *| Breakdown dﬂu 70.6% time
slice-1)) spent on this
print Re matrices..." Executing instructions ~ 0.0%
pousLE, o, imyrank, M e Calling other functions 100.0%
200+ st, lerr)
myra ierr)
call mmult nproc, mat_a mat mat_c
rint *,myrank,”: Writing results...®
disp = slice*myrank
3 fh, ierr)
ierr)
108 @ #1f FULLDEBUG (T) =
5= -
| Input/Output | Project Files ~ Main Thread Stacks | Functions |
Main Thread Stacks
Total core time A MP Function(s) on line Source Position
= # mmultd sol program ms ol mmult6.fo0:1

70.6% . mmult [inlined] mmult6.f90:96

14.6% E.. 14.6% mpi_recv_ y mmult6.f90:89

5.3% - mpi_file_open_ mmult6.f90:102

1.9% T 1.9% mpi_recv_ mmult6.f90:90

1.9% - 1.9% mpi_send_ mmult6.f90:79

1.2%,, & minit mmult6.f90:68

1.1% + minit call minit(size, mmult6.f90:73

1.1% = minit call minit(size, mmult6.f90:69

24% ., | + 6 others

Showing data from 844 samples taken over 4 processes (211 per process) Arm Forge 18.2.1 2 Main Thread View

59 Confidential © 2018 Arm Limited q r m

Successat Scale @ |
Curtin Quantum Collisions
Confidential ? 2018 Arm Limited q r m

CCC and the ORNL GPU Hackathon @ Pawsey

Quantum collisions in atomic and molecular physics

 CCC: Quantum mechanics
- Fusion energy
- Laser science
- Lighting industry
- Medical imaging / therapy
- Astrophysics

* lgor Bray, Head of Physics and Astronomy, and
the Theoretical Physics Group, in the Faculty of
Science and Engineering, at Curtin University

Curtin University

61 Confidential © 2018 Arm Limited q r m

Initial profile at production scale

62

e e = [homey/igor/group/B3+/PRODUCTION/FINE_ENERGY_SCAN/ profile_192p_8n_24t_2018-04-18_19-19.map - Arm MAP - Arm Forge 18.1.2 [Trial Version]
Profiled: cccd profila on 192 processes, 8 nodes, 192 cores (1 per process) Sampled from: Wed Apr 18 2018 19:19:10 (UTC+08) for 1,453.08 Hide Metrics...
Application activity
CPU floating-point
128%
Memory usage
onGe
°
| |
19:19:40-19:34:09 (868.918s, 59.8% of total): Main thread compute 0.5 %, OpenMP 8.4 %, MPI in OpenMP 0.5 %, MPI 0.0 %, File /O 0.0 %, OpenMP overhead 10.5 % Zoom 1 = ®©
Time spent on line 677 o0
[] save !lrlt_!:l-, states, nchpmax
669 .
e £14_sw_ng <oy, 1) then " | Breakdown of the 0.0% time spent on this line:
671
12 iparity = (-1)**(lg + ipar) Executing instructions 100.0% IEEG_—_——————————
73 neht - 0 Calling other functions. 0.0%
614 nehp = 1
Lok Time in instructions executed:
66 v do N-1,Nstate str to scat
<0.1% 7 - AN)
618 oy Scalar floating-point 0.0%
<0.1% 79 na =« na_ngi¥) WMWM 0.0%
::‘1’ e This is a horrible *hack®, its purpose i *unnatural® parity states, Scalar integer 0.0%
€82 . L 4 -3t in 1 ing £ -0 3 try. "
- e Ay Ry ey T Vecior ntogo o
684 c but they are coming out with zero V-matrix due to the parity asd ang.mem. considerations anyway... Memory access 100.0% I
685 lapar = (-1)**la
686 it (ipar(nchp) .ne.0.and.lg.ne.0) lapar - lpar(N) Branch
o o . aaa Other 0.0%
| Input/Output Projoct Files OpenMP Stacks OpenMP Regions _ |JEURGHGRSN |
Functions 200
Sett Total MP Chid Overhead Function A
<0.1% 88.8% 88.8% <0.1% cee
<0.1% <0.1% DA% <0.1% cge
<0.1% <0.1% cnj [inlined]
0.1% 0.1% 0.1% cof3j [inkined] '
<0.1% <0.1% <D1% <0.1% cof6j
<0.1% <0.1% coul90
<0.1% <0.1% <0.1% coulce
4.6% 10.5% 59% form
<0.1% 0.3% 0.2% getchchar
J91% M 394% 0.4% getchinfo
<0.1% <0.1% getchinfo
<0.1% 0.8% 0.7% getformout
0.9% 10.4% 9.5% getformout2 [inlined]
1.8% 21% 0.3% getformout3 [inlined]
<0.1% <0.1% getprod

Showing data from 114,816 samples taken over 192 processes (598 per process) o Am Forge 18.1.2 C to: igo au w OpenMP View ;

Confidential © 2018 Arm Limited

arm

Load balancer is imbalanced?

Customized load balancing algorithm wasn’t delivering expected results

0 8 0 -10 199 329 492 1.21 13530 0 89 -1 091%
LG, node, ipar, inc,vt, 11,12, tperi,nch,naps,mt,prev LG,eff

1 8 o -7 591 573 872 1.97 45150 0 350 0 80%
LG, node, ipar, inc,vt, 11,12, tperi,nch,naps,mt,prev LG,eff

2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86%
LG, node, ipar, inc,vt, 11,12, tperi,nch,naps,mt,prev LG,eff

3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91%

LG, node, ipar, inc,vt, 11,12, tperi,nch,naps,mt,prev LG,eff

63 Confidential © 2018 Arm Limited q r m

“That makes no sense!”

Computing one grid point takes as much time as computing the entire grid

64

Self
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%

4.6%
<0.1%
V1%
<0.1%
<0.1%
0.9%
1.8%
<0.1%

~ A

Total
88.8%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
10.5%
0.3%
39.4%
<0.1%
0.8%
10.4%
2.1%
<0.1%

~ A~

MPI

Child

88.8%
<0.1%

<0.1%
<0.1%

<0.1%
5.9%
0.2%
0.4%

0.7%
9.5%
0.3%

~ A

Overhead
<0.1%
<0.1%

<0.1%

oA

Showing data from 114,816 samples taken over 192 processes (598 per process)

Function

cce

cgc

cnj [inlined]

cof3;j [inlined]

cof6j

coul90

coulcc

form

getchchar

getchinfo

getchinfo
getformout
getformout2 [inlined]
getformout3 [inlined]
getprod

Surprise! Didn’t expect that.

Confidential © 2018 Arm Limited

arm

Final profile, again at production scale
Found an unbounded array copy a(:) that should have beena(1:N)

ene = ! NE_ENERGY. N/ d_profile_192p_8n_241_2018-04-19_17-04.map - Arm MAP - Arm Forge 18.1.2 [Trial Version]
Profiled: cced profila on 192 processes, 8 nodes, 192 cores (1 per process) Sampled from: Thu Apr 19 2018 17:04:41 (UTC+08) for 986.08 Hide Metrics....
Application activity
CPU floating-point
08N
Memory usage
omae
17:04:52-17:13:44 (531.4485, 53.9% of total): Main thread compute 0.7 %, OpenMP 3.4 %, MP1 in OpenMP 0.3 %, MP1 0.0 %, File /O 0.0 %, OpenMP overhead 15.2 %, Sleeping 1.0 % Zoom %1 = @
Time spent on line 688 20
W to tnciude “wmatural® parity states, 0| Breskdown of the 0.0% tine spent on this Nae:
. (hat In principel shasid not be there Exscuting instructions 100,0°% I
w . trix due to the parity asd ang.ses. considerations asyway... Calling other functions 0.0%
e it tf.unmmp).n,:.m. ig.0e.0) lapar « ipar(s) Time in instructions executed:
o e AT T Scalar floating-point o
Vector floating point 0.0%
Scalar integer 0.0%
Vector integer 0.0%
n2 o4 this channel: sche’,nch, Memory access 100.0%
ne © o Branch
ny Otwe R
InputOutput Project Files OpenMP Stacks OpenMP Regions _ |ISIRGEGER |
Functions 20
Selt Totl MPI Chid Overhead Function A
73% 16.8% 96% form
<0.1% 0.3% 0.3% getchchar
5.2% 56% gotchinto
D0.1% 0.1% getchinko l
0.1% 1.4% 1.3% getformout
1.3% 16.3% 15.0% getlormout2 [inlined]
27% 3.2% 0.5% getformout3 [inlined)
<0.1% <0D.1% getprod
<0.1% <0.1% [fiest1 [inlined]
<0.1% <0.1% lagpoi8 [inlined)
<0.1% 03% 03% 03% MAIN__ [OpenMP region 1]
0.3% 0.4% 0.1% makechil
<0.1% <0.1% <0.1% makegreen
0.1% <0.1% <0.1% makeps
1.4% 1.9% 0.5% maketail

ﬂﬂtﬂnl““ﬂ&m!%w&t@wm o Arm Forge 18.1.2 Connected to: igor@athena pawsey.org.au « OpenMP View ?

65 Confidential © 2018 Arm Limited

arm

Before and after

66

4.6%
<0.1%

39.1% L

<0.1%
<0.1%

10.5%

0.3%
39.4%
<0.1%
0.8%

5.9%
0.2%
0.4%

0.7%

form
getchchar
getchinfo
getchinfo
getformout

Confidential © 2018 Arm Limited

Self Total MPI Child Overhead Function
7.3% 16.8% 9.6% form
<0.1% 0.3% 0.3% getchchar
5.2% 5.6% 0.4% getchinfo
<0.1% <0.1% getchinfo
0.1% 1.4% 1.3% getformout

arm

Balanced the load balancer

Load can be balanced mow that work blocks are of expected sizes

Before:
0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
1 8 o -7 591 573 872 1.97 45150 0 350 ® 80% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node, ipar, inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
After:
8 0 -10 174 329 492 1.06 13530 0 85 -1 93% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
1 8 0 -11 415 577 872 1.40 43956 0 340 @ 97% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
2 8 0 -11 616 757 1153 1.55 79003 0 592 1 97% LG,node,ipar, inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
3 8 0 -12 667 874 1331 1.46 105111 0 734 2 96% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff

67 Confidential © 2018 Arm Limited q r m

+

4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
+ 4 4 4 4 + 4 4

Custom metrics for Lustre

Combine I/O performance data

from system and application’ I I

arm

Advanced 1/0 investigation of Lustre on Archer

Simultaneously view system-level and application-level performance.

* Show data from Lustre client logs along with application data

e jPIC3D: kinetic simulation of plasma
Fully 3D implicit particle-in-cell (PIC)
C++ and MPI
Intermediate simulation results saved in VTK binary files, single file per quantity
Checkpointing done through HDF5 to individual files per process
Field values saved using collective MPI-10 to single file

69 Confidential © 2018 Arm Limited q r m

Available performance data

Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data Application level performance data
* Lustre logs: each read, write, or * Approximate I/O bandwidth in a
metadata operation recorded from timeline.
each Lustre client. * Approximate classification of I/0
* Aggregate I/O data for precise instructions (methods).
bandwidth figures for read/write at * In block-synchronous approach, it is
any moment in time. possible to identify different I/O phases.

* Max/min/mean bandwidth.

* Scheduler logs: application run start
and end time and assigned nodes.

70 Confidential © 2018 Arm Limited q r m

MAP aligns the system timeline with the application timeline

Lustre data is read from the lustre client’s log files, while application data is read directly.

Profiled: iPIC3D on 1024 processes, 64 nodes Sarfpled from: Wed Febly 2018 20:02:56 (UTC) for 730.3s .

Main thread activity

Lustre read rate Sl
1.57 MB/s

Lustre write rate
0.01 GB/s

Lustre metadata operations %%

1.38k /s

Lustre file opens
0.68 k /s

20:02:56-20:15:06 (730.285s): Main thread comj

N-N file read shows spike in Checkpoint I/O corresponds
file open/read operations. to spike in Lustre write rate

71 Confidential © 2018 Arm Limited q r m

We can focus on each 1/0 operation individually

Select a portion of the application timeline to view the source code performing 1/0O.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s

Main thread activity

Lustre read rate L
1.78 MB/s

Lustre write rate 4z

0.00 GB/s
0

Lustre metadata operations %%
1.61k/s

. -
Lustre file opens sz

0.80 k /s . e

0

20:05:26-20:05:41 (15.336s, 2.1% of total): Main thread compute 9.2 %, OpenMP 21.4 %, MPI 18.7 %, File I/O 50.7 %, OpenMP overhead 0.0 %, Sleeping 0.0 %

Input/Output | Project Files | Main Thread Stacks | Functions |]
Main Thread Stacks
Total core time A MPI Overhead Function(s) on line

= & iPIC3D [program] N

= # main ——
=1iPic3D::c_Solver::WriteOutput(int) —
WriteMomentsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopol...

43.4% .

7.4% [l - [+ WriteFieldsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopology... cm.ce
0.4%).2 - #1 other e
20.6% pll_ el i iPic3D::c_Solver::ParticlesMover() .o
15.5% g A 8§ ! # iPic3D::c_Solver::CalculateField(int) -
12.3% 9 B M o # iPic3D::c_Solver::CalculateMoments()

0.3%).3 + 2 others

72 Confidential © 2018 Arm Limited

arm

MAP’s timeline shows 1/0 overlapping with communication

We see elevated Lustre write rate when writing checkpoint restart files in HDF5.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s
Main thread activity

Lustre read rate p
1.04 MB/s

Lustre write rate 220
0.05 GBfs

Lustre metadata operations 1%
0.96 k /s

l.m-qn. B8.39 o e
038k /s

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks |
Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program]
_ = ¢ main
378% m ol m 0 # iPic3D::c_Solver::CalculateField(int) :I—_
. = I - #IPic3D:ic_Solver::ParticlesMover(]
[-]iPic3D::c_Solver::WriteQutput(int)
17.5% [T [+ iPic3D::c_Solver::WriteRestart(int) spiksa/iprcan. cpp
—<0.1% "#1 other .
16.0% B m B = 27 & iPic3D::c_Solver::CalculateMoments(), _cray_memcpy_SNB .
0.4% .2 + 2 others

'ipic3d/iPIC3D.cpp

73 Confidential © 2018 Arm Limited q r m

It’s possible to overlap different I/O approaches

HDF5 and VTK I/O operations occur at the same time on different ranks.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s
Main thread activity

Lustre read rate e
0.52 MB/s :
0
Rt b
0.04 GB/fs -
0 e

Lustre metadata operations %%
0.55k/s

0
Lustre file opens
no21kic

Input/Output | Project Files = Main Thread Stacks | Functions |

Main Thread Stacks P
Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program]
= ¢ main
[_:_ﬁ iPic3D::c_Solver::WriteQutput(int)

26.3% JL [+ WriteMomentsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopol...
. - [+ WriteFieldsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopology...
- #1PiIc3D::c_Solver::WriteRestart(int

i —- o B2 oEhers S
16.5%pg ML k21 iPic3D::c_Sotver::ParticIesMover() e
10.4% .5 & w21 iPic3D::c_Solver::CalculateMoments() 34/matn/1PICIDLLD.

= iPic3D::c_Solver::CalculateField(int) 34/191C3D. cpp
= EMfields3D::calculateE(int) B
6.9% u ‘B . % GMRES(void (EMfields3D::*)(double*, double*), double*, int, d... Simm:

74 Confidential © 2018 Arm Limited

arm

4 4 + 4 + 4 4 “* + + 4

4 4 + 4 4 4 4 + + + 4
Wrap U

4 4 + K + 4 4 + + + +

+ + + + + 4 + + + + 4

+ + + + + + + + + + i

4 + + N

Confidential © 2018 Arm Limite

arm

+

Five great things to try with Arm DDT

76

ittt | Besigons | Woerguins | Tcepons m'mmi

Tracepoim Quipst

Tracegeint | Processes | Values logged
vhone B85 i':l‘s“\ mype "Jl MY ol u‘ M nod ey
vicor 081 ?;i':l-’liiillf = 1 iam p
e 8085 :",;‘I'_”______]_II o < i o W20 oy
do®ll g |81 e =
T S P LT | LR ey
Ao 8081 f.::u) |1 o
ety | .

The scalable print

Vions 081 T‘}, N

L

alternative

&& !stremp(argv([i], “crash")) {

0;

r(i=0;1i<SIZEM; i++)
for (j =0 ; j < SIZE 0; j++)
Clil[]] = 6;

r(i=0; 1i<SIZEM; i++)
for (j =0 ; j < SIZE N; j++)

for (k=0 ; k < SIZE 0; k++)

C[i][j] += A[1][k] * BIKI[j];

@ Program Stopped

(numpr
MPI § Process 0:
MPI R Qg Process stopped at watchpoint "rank" in main (watchmatrix.c:45).

0ld value: 0
New value: 1074790400

¥ Always show this window for watchpoints

rintfCH o ‘ B> Continue | Pause || Il Pause Al ‘
(arge e
for (i =0;

{

B Stop on variable change

s", *(char **)argv[i]);

R © Program Stopped

' Processes 0-3:

Memory error detected in main (hello.c:118):

null pointer dereference or unaligned memory access

Note: the latter may sometimes occur spuriously if gual

enabled

Confidential © 2018 Arm Limited

Tip: Use the stack list and the local variables to explore
current state and identify the source of the error.

Detect read/write
beyond array bounds

Detect stale memory

£ hello.c 3

A\ This file is newer than your program. Please recompile then restart yo

43 else
A 44 test=-1;

45 |}

46

47 = void func3()

48

49 void* i = (void*) 1;
A 50 while(i++ || 1)

51 free((void*)i):

A portabinity 'itis of type 'void *'. When using void pointers in calcula

Left click to add a breakpoint on line 50

Static analysis warnings
on code errors

allocations

arm

Six Great Things to Try with Arm MAP

——— 30 1 late to the party
| — L % 31 do j=1,20*nprocs; a
1 gg end it Project Files | Main Thread Stacks | Functions
g .
— 34 = if (pe /= 0) then tacks
% .. 35 11 MPI_SEND(a, si . .
36 elgg - — 2 4~ MPI Function(s) on line
- 37 @ do from=1,nprocs-1 = CallActionsSeparatedConcerns [in
= % 38 call MPI RECV(b, = Call [inlined]
- —] —_— zg dO,Jilisﬂi\ b=5‘"¥ =hemelb::net::IteratedAction::Cz
! : a1 engrgg + “ANSwer =hemelb::extraction::Property?
) 42 end if = hemelb::extraction::Property
43 end do hemelb::extraction::LocalP
0 4] % 44 call MPI BARRIER(MPI CO Il 80.3% PMPI_File_write_at
pute 76 %. MPI 24 %_ File —a 00] ‘ ° _PMPLFile_write_

Find the peak memory k%l Remove 1/O bottleneck

use

Hide Metrics... — [- -_

size, nproc, mat a
Ali*size+k]*B[k*s

- —— % .

Nal:

Improve memory access {ed Restructure for
. i . .

i ! st vectorization

Make sure OpenMP
regions make sense

77 Confidential © 2018 Arm Limited q r m

Wrap Up

Visit arm.com/hpc to learn more about Arm Forge and download a free trial.

arm
ALLINEA STUDIO

X/
0.0

C/C++ Compiler

\/
0‘0

Fortran Compiler

\/
0’0

Performance Libraries
Forge (DDT and MAP)

Performance Reports

\/
0’0

R/
0’0

78 Confidential © 2018 Arm Limited

Tools are a must-have when programming HPC systems
Use a structured, profile-driven optimization methodology
Arm DDT can help improve code correctness

Arm MAP can help improve code performance

Arm Forge = DDT + MAP is a great choice at scale

Download at arm.com/hpc

arm

Thank You

Danke

Merci

157159

HYMES arm
Gracias

Kiitos

ZAreL| Cf

Jeddlq

NTIN

79 Confidential © 2018 Arm Limited

