

Towards Efficient Communication and I/O on Oakforest-PACS: Large-scale KNL+OPA Cluster

Toshihiro Hanawa

Joint Center for Advanced HPC (JCAHPC)

Information Technology Center, the University of Tokyo

MVAPICH User Group Meeting 2018

Agenda

- Introduction of JCAHPC
- Overview of Oakforest-PACS system
- MPI performance issues and remedies
 - Collective communication
 - MPI startup
- IME performance

JCAHPC: Joint Center for Advanced High Performance Computing http://jcahpc.jp

- JCAHPC was established in 2013 under agreement between
 - Center for Computational Sciences (CCS) at University of Tsukuba, and
 - Information Technology Center (ITC) at the University of Tokyo.
- Design, operate and manage a next-generation supercomputer system by researchers belonging to two universities

JCAHPC Philosophy

- Organized to manage everything smoothly
- Very tight collaboration for "post-T2K" with two universities based on T2K efforts
 - Originally, T2K Open Supercomputer Alliance by three universities: Tsukuba, Tokyo, and Kyoto since 2008
- For main supercomputer resources, uniform specification to single shared system
 - Each university is financially responsible to introduce and operate the system

-> unified procurement toward single system with *largest scale in Japan* (at that moment)

⇒ Oakforest-PACS (OFP)

Machine location: Kashiwa Campus of U. Tokyo

Google マップ

https://www.google.com/maps/@?dg=dbrw&newdg=1

CO JCAHPC

😂 ЈСАНРС

Oakforest-PACS (OFP)

U. Tokyo convention U. Tsukuba convention

⇒ Don't call it just "Oakforest" ! "OFP" is much better

- 25 PFLOPS peak
- 8208 KNL CPUs
- FBB Fat-Tree by OmniPath
- HPL 13.55 PFLOPS
 #1 in Japan → #2
 #6→#12
- HPCG #3→#7
- Green500 #6→#25
- IO500 #1
- Full operation started Dec. 2016
- Official Program started on April 2017

51st TOP500 List (ISC18, June 2018) CO JCAHPC

	Site	Computer/Year Vendor	Cores	R _{max} (PFLOPS)	R _{peak} (PFLOPS)	Power (MW)
1	Oak Ridge National Laboratory, USA	<u>Summit</u> ,IBM P9 22C 3.07GHz, Mellanox EDR, NVIDIA GV100, 2018 IBM	2,282,544	122.3	187.7	8.8
2	National Supercomputing Center in Wuxi, China	Sunway TaihuLight , Sunway MPP, Sunway SW26010 260C 1.45GHz, 2016 NRCPC	10,649,600	93.0	125.4	15.4
3	Lawrence Livermore National Laboratory, USA	<u>Sierra</u> ,IBM P9 22C 3.1GHz, Mellanox EDR, NVIDIA GV100, 2018 IBM	1,572,480	71.6	119.1	
4	National Supercomputing Center in Tianjin, China	<u>Tianhe-2A</u> , Intel Xeon E5-2692v2, TH Express-2, Matrix-2000, 2018 NUDT	4,981,760	61.4	100.6	18.5
5	AIST, Japan	Al Bridging Cloud Infrastructure (ABCI), Intel Xeon Gold 20C 2.4GHz, IB-EDR, NVIDIA V100, 2018 Fujitsu	391,680	19.9	32.6	1.65
6	Swiss National Supercomputing Centre (CSCS) , Switzerland	<u>Piz Daint,</u> Cray XC50, Intel Xeon E5 12C 2.6GHz, Aries, NVIDIA Tesla P100, 2017 Cray	361,760	19.6	25.3	2.27
7	Oak Ridge National Laboratory, USA	<u>Titan</u> Cray XK7/NVIDIA K20x, 2012 Cray	560,640	17.6	27,1	8.21
8	Lawrence Livermore National Laboratory, USA	<u>Sequoia</u> BlueGene/Q, 2011 IBM	1,572,864	17.2	20,1	7.89
9	Los Alamos NL / Sandia NL, USA	<u>Trinity</u> , Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Cray Aries, 2017 Cray	979,968	14.1	43.9	3.84
10	DOE/SC/LBNL/NERSC USA	<u>Cori</u> , Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Cray Aries, 2016 Cray	632,400	14.0	27.9	3.94
11	KISTI, Korea	<u>Nurion</u> , Cray CS500, Intel Xeon-Phi 7250 68C 1.4GHz, Intel Omni-Path, 2018 Cray	570,020	13.9	25.7	
12	Joint Center for Advanced High Performance Computing, Japan	Oakforest-PACS, PRIMERGY CX600 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path, 2016 Fujitsu	557,056	13.5	24.9	2.72
iT	東京大学情報基盤センター INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO	2018/08/0 MVAPICH User Group Meeting 2018 8	7	г 🕂 П	www.top500.o ราชาวง Cor Computation	シノー

😂 ЈСАНРС

IO 500 Ranking (June, 2018)

	Site	Computer	File system	Client nodes	IO500 Score	BW (GiB/s)	MD (kIOP/s)
1	JCAHPC, Japan	Oakforest-PACS	DDN IME	2048	137.78	560.10	33.89
2	KAUST, Saudi	Shaheen2	Cray DataWarp	1024	77.37	496.81	12.05
3	KAUST, Saudi	Shaheen2	Lustre	1000	41.00	54.17	31.03
4	JSC, Germany	JURON	BeeGFS	8	35.77	14.24	89.81
5	DKRZ, Germany	Mistral	Lustre2	100	32.15	22.77	45.39
6	IBM, USA	Sonasad	Spectrum Scale	10	24.24	4.57	128.61
7	Fraunhofer, Germany	Seislab	BeeGFS	24	16.96	5.13	56.14
8	DKRZ, Germany	Mistral	Lustre1	100	15.47	12.68	18.88
9	Joint Institute for Nuclear Research	Govorun	Lustre	24	12.08	3.34	43.65
10	PNNL, USA	EMSL Cascade	Lustre	126	11.12	4.88	25.33

講習会:KNL実践

Deployment plan of 9 supercomputing center (Feb. 2017) CO JCAHPC

Power consumption indicates maximum of power supply (includes cooling facility)

Center for Computational Sciences

MVAPICH User Group Meeting 2018

Computation node & chassis

Computation node (Fujitsu PRIMERGY CX1640) with single chip Intel Xeon Phi 7250 (68c Knights Landing, 3+TFLOPS) and Intel Omni-Path Architecture card (100Gbps)

40th ORAP Forum, Paris

11

JCAHPC

Water cooling pipes and rear CO JCAHPC door cooling (radiator)

40th ORAP Forum, Paris

Storage system of OFP

- Shared File System
 - Lustre, 26PB
- File Cache System
 - DDN IME, Burst Buffer: 940 TB, 50 servers

Specification of Oakforest-PACS system

Total pea	k performa	ance	25 PFLOPS
Total num nodes			8,208
Compute Product node			Fujitsu PRIMERGY CX600 M1 (2U) + CX1640 M1 x 8node
	Processor		Intel [®] Xeon Phi [™] 7250 (Code name: Knights Landing), <mark>68 cores, 1.4 GHz</mark>
	Memory	High BW	16 GB, 490 GB/sec (MCDRAM, effective rate)
		Low BW	96 GB, 115.2 GB/sec (peak rate)
Inter-	Product		Intel [®] Omni-Path Architecture
connect	Link speed	I	100 Gbps
	Topology		Fat-tree with (completely) full-bisection bandwidth

Specification of Oakforest-PACS system (I/O)

Parallel File	Туре		Lustre File System
System	Total Capacity		26.2 PB
	Meta	Product	DataDirect Networks MDS server + SFA7700X
	data	# of MDS	4 servers x 3 set
		MDT	7.7 TB (SAS SSD) x 3 set
	Object storage	Product	DataDirect Networks SFA14KE
		# of OSS (Nodes)	10 (20)
		Aggregate BW	~500 GB/sec
Fast File Cache	Туре		Burst Buffer, Infinite Memory Engine (by DDN)
System	Total capa	acity	940 TB (NVMe SSD, including parity data by erasure coding)
	Product		DataDirect Networks IME14K
	# of servers (Nodes)		25 (50)
	Aggregate BW		~1,560 GB/sec

Full bisection bandwidth Fat-tree by Intel[®] Omni-Path Architecture

16

CO JCAHPC

Facility of Oakforest-PACS system

			4.2 MW (including cooling) → actually around 3.0 MW
# of racks			102
-	Compute Node	Туре	Warm-water cooling Direct cooling (CPU) Rear door cooling (except CPU)
		Facility	Cooling tower & Chiller
Others Type		Туре	Air cooling
		Facility	PAC

😂 ЈСАНРС

Software of Oakforest-PACS

- OS: Red Hat Enterprise Linux (Login nodes), CentOS or McKernel (Compute nodes, dynamically switchable)
 - McKernel: OS for many-core CPU developed by RIKEN R-CCS
 - Ultra-lightweight OS compared with Linux, no background noise to user program
 - Expected to be installed to post-K computer
- Compiler: GCC, Intel Compiler, XcalableMP
 - XcalableMP: Parallel programming language developed by RIKEN R-CCS and University of Tsukuba
 - Easy to develop high-performance parallel application by adding directives to original code written by C or Fortran
- Application: Open-source softwares

2018/08/0

on

: OpenFOAM, ABINIT-MP, PHASE system, FrontFlow/blue, and so

Software of Oakforest-PACS

00	JCAHPC

	Compute node	Login node		
OS	CentOS 7, McKernel	Red Hat Enterprise Linux 7		
Compiler	gcc, Intel compiler (C, C++, Fort	ran)		
MPI	Intel MPI, MVAPICH2			
Library	Intel MKL			
Application	 LAPACK, FFTW, SuperLU, PETSc, METIS, Scotch, ScaLAPACK, GNU Scientific Library, NetCDF, Parallel netCDF, Xabclib, ppOpen-HPC, ppOpen-AT, MassiveThreads mpijava, XcalableMP, OpenFOAM, ABINIT-MP, PHASE system, FrontFlow/blue, FrontISTR, REVOCAP, OpenMX, xTAPP, AkaiKKR, MODYLAS, ALPS, feram, GROMACS, BLAST, R packages, 			
Distributed FS	Bioconductor, BioPerl, BioRuby	Globus Toolkit, Gfarm		
Job Scheduler	Fujitsu Technical Computing Sui	,		
Debugger	Allinea DDT			
Profiler	Intel VTune Amplifier, Trace Analyzer & Collector			

Applications on OFP^{CO JCAHPC}

0.04

0.02

0.04

0.06

0,08

Selsmic way

EDM-mesh

 Ab-initio Electron Dynamics

Lattice QCD

ARTED

- Quantum Chrono Dynamics
- <u>NICAM & COCO</u>
 - Atmosphere & Ocean Coupling

• <u>GAMERA/GHYDRA</u>

• Earthquake Simulations

• <u>Seism3D</u>

Seismic Wave Propagation

0.01

0.005

0.005

0.01

-0.015

Collective comm.: Run-to-run variability & Performance Issue

by courtesy of M. Horikoshi, Intel M. Horikoshi et. al (incl. Hanawa), IXPUG 2018 in HPC Asia 2018 WS

MVAPICH User Group Meeting 2018

21

^{筑波大学} 新算科学研究センター Center for Computational Sciences

CO JCAHPC

Root cause of variance

Frequency transition (Turbo): 1.4GHz <-> 1.5GHz <-> 1.6GHz

• Transition stalls many microseconds.

Periodic MWAIT wake-up:

- Linux system default is using idle=mwait. MONITOR and MWAIT instructions on idle hardware threads.
- KNL forces a periodic wake-up of hardware threads in an MWAIT state 10 times per second and additionally cause frequency transitions on the entire processor.

OS work:

 Daemons, hardware interrupts, middleware (system monitoring, scheduling). idle thread on the same core or tile is awakened to perform OS work, the application thread will be delayed and additionally cause frequency transitions.

Remedies

Setting was done on OFP compute node

idle=halt: Stopping MONITOR/MWAIT and single-tile turbo (No 1.6GHz)

Tickless mode (nohz_full=2-67,70-135,138-203,206-271): Decreasing OS timer interrupt from 1KHz to 1Hz except tile-0. And excluding tile-0 from application.

Binding Lustre daemon and system process to tile-0

Using acpi-cpufreq driver rather than intel_pstate

Tuning spinning: PSM2_YIELD_SPIN_COUNT=10000 and I_MPI_COLL_SHM_PROGRESS_SPIN_COUNT=100000

* These remedies have cons side effects (effect depends on situation and application).

by courtesy of M. Horikoshi, Intel M. Horikoshi et. al, IXPUG 2018 in HPC Asia 2018 WS

MVAPICH User Group Meeting 2018

23

^{筑波大学} 新算科学研究センター Center for Computational Sciences

[usec]

94

145

After improvement

Core-awareness on MPI comm.

- osu_bw result on "core-by-core"
- Intel MPI 2018.2

MVAPICH User Group Meeting 2018

^{筑波大学} 新算科学研究センター Center for Computational Sciences

Why?

- Omni-Path hardware
 - 16ch of DMA engines for transmission (SDMA0 15)
 - After transmission, interrupting to core for following msg
- Interrupt vector to be handled is 19
 - SDMA0 15
 - hfi1
 - kctxt0 2
- "Omni-Path Fabric Performance Tuning User Guide" gives a solution
 - Adjusting the interrupt handler mapping to core improves the performance

Driver setting on OPA

- Setting core to handle interrupt (1) /proc/irq/int #/smp_affinity_list
 - "irqbalance" is suggested on KNL, then drivers are mapped to core 3 - 18 initially
- Core setting for SDMA usage (2) (core to do polling by kernel thread) /sys/devices/pci0000:00/0000:00:01.0/0000:01 :00.0/infiniband/hfi1_0/sdma[0-15]/cpu_list
 - no setting by default
- How to set
 - different core in the same tile
 - sharing L2 cache improves efficiency

Center for Computational Sciences

HPC158 温泉研究会@熱海

Optimal setting on OPA

- Consideration
 - In case of MPI+OpenMP, it is highly possible where
 - "master" thread is mapped on "even" numbered core
 - core#0 receives interrupt by timer, then mapping kctxt to #2,#3,#4 and hfi1 to #2, respectively
- Interrupting cores of SDMA0~15: 5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,10
- Interrupt handling cores of SDMA: 4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,11
 - the last core specification is just for previous experience where core#11 was bad (why?)
 - this special core varies on KNL chip itself

HPC158 温泉研究会@熱海

6

After optimization

 Intel MPI 2017u2 on "OFP-mini" testbed with XP7210 (since we cannot change the OS configuration from user mode) => difficult to determine optimal setting

Before

HPC158 温泉研究会@熱海

6

29

After

Core-awareness on MVAPICH2

- MVAPICH2 2.3 with latest OPA-PSM2 driver
- Intel MPI 2018.2
- MVAPICH2 result is the same as the typical case of Intel MPI. => No core-awareness is observed in MV2!!

MPI startup issue

• MPI_Init cost up to 2K node (64 proc/node = 128K proc.) performance improvement on Intel MPI

Procs	Node	Procs/ node	IMPI (2017.1.132)	IMPI 2017 U3 PR
8192	128	64	74.553	8.799
16384	256	64	168.785	15.543
32768	512	64	427.791	36.698
40960	640	64	586.260	54.010
65536	1024	64	1223.968	124.607
131072	2048	64	3667.967	335.690

😂 ЈСАНРС

Center for Computational Sciences

MPI startup improvement

from MVAPICH2 web page

- After this measurement (2017/3), remedies ("idle=halt," described in collective comm.) were applied, so slightly worse now.
 - Now, "Hello World" with 8K is 7.04 s

Latest "Hello World" results

# of MPI proc.	Node			MV2 2.3a with hydra	
8192	128 (64 ppn)	8.12	6.69	25.67	10.54
	2018/08/0				筑波大学

IOR benchmark result using MV2 on IME

- IOR-easy write in IO500 benchmark
 - 2MB transfer size, file per process, several GB file size per process
 - Regulation: over 5min, but MV2 case is shorter (too big filesize for my quota ...)
- MVAPICH2-2.3+IME patch vs Intel MPI 2018.2
 - 128 node
 - FUSE: access to /cache/datadir for /work/datadir
 - native IME: ime:///work/datadir
 - MV2_ENABLE_AFFINITY=0 is required for good performance. Why??

# of MPI proc.	IMPI 2018.2 (FUSE) [GB/s]	MV2 2.3+IME [GB/s]
2K (16 ppn)	268.7	651.7
4K (32 ppn)	289.1	671.0
8K (64 ppn)	288.9	564.5
2 京大学情報基盤センター 8	018/08/0 MVAPICH User Gr	oup Meeting 2018 33

^{筑波大学} 計算科学研究センター Center for Computational Sciences

Request for MVAPICH2 on OFP

- Hydra support with same performance as "rsh" case
 - In current MVAPICH2 "mpirun_rsh" is obviously better performance than "mpiexec.hydra," but Hydra has better job scheduler support.
- Core "exclude list" like "I_MPI_PIN_PROCESSOR_EXCLUDE_LIST" environment variable
 - OFP specifies "tickless" core to core #1-67, so each job should not be assigned on core #0 (and #1).

😂 ЈСАНРС

Summary

- JCAHPC is a joint resource center for advanced HPC by U. Tokyo and U. Tsukuba
- Oakforest-PACS (OFP) with 25 PFLOPS peak performance
 - Intel Xeon Phi (Knights Landing) and Omni-Path Architecture
- OFP is used not only for HPCI and other resource offering program but also a testbed for McKernel and XcalableMP system software to support post-K development.
- Many issues on KNL+OPA combination, such as core-awareness, collective comm. scalability, and hyperthreading.
 - MVAPICH2 helps many performance improvements and complemental functions, such as native MPI-IO support for IME.
- We will continue the investigation using one of world largest KNL+OPA cluster OFP to overcome issues on new technology combination and pursue efficient way on manycore environment.
 - Multiple-Endpoint for OpenMP+MPI hybrid program is promising technique.
 - McKernel can also help performance stability without OS jitters.

