

Proudly Operated by Battelle Since 1965

Scaling Deep Learning Algorithms on Extreme Scale Architectures

ABHINAV VISHNU

Team Lead, Scalable Machine Learning, Pacific Northwest National Laboratory MVAPICH User Group (MUG) 2017

The rise of Deep Learning!

Proudly Operated by Battelle Since 1965

Several scientific applications have shown remarkable improvements in modeling/classification tasks !!

Challenges in Using Deep Learning

Proudly Operated by Battelle Since 1965

- Supercomputers are typically used for simulation – effective for DL implementations?
- How much effort required for using DL algorithms?
- Will it only reduce time-tosolution or improve baseline performance of the model?

- How to design DNN topology?
- Which samples are important?
- How to handle unlabeled data?

Vision for Machine/Deep Learning R&D

Proudly Operated by Battelle Since 1965

Novel ML/DL Algorithms: Pruning Neurons

Proudly Operated by Battelle Since 1965

Area Under Curve - ROC:

Higgs H the Higgs MI

ATLAS LAL Louis- kapple 5- @ Googh

- 1) Improved from 0.88 to 0.94
- 2) 2.5x speedup in learning time
- 3) **3x simpler model**

Novel ML/DL Algorithms: Neuro-genesis

Proudly Operated by Battelle Since 1965

Can you create neural network topologies semi-automatically? Generating Neural Networks from BluePrints

Novel ML/DL Algorithms: Sample Pruning

Which Samples are Important? YinYang Deep Learning for Large Scale Systems

Scaling DL Algorithms Using Asynchronous Primitives

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Sample Results

PIC MVAPICH Strong Scaling

SummitDev IBM Spectrum MPI Weak Scaling

What does Fault Tolerant Deep Learning Need from MPI?

Proudly Operated by Battelle Since 1965

MPI has been criticized heavily for lack of fault tolerance support

- 1) Existing MPI implementation
- 2) User-Level Fault Mitigation
- 3) Reinit Proposal

Which proposal is necessary and sufficient?

Impact of DL on Other Application Domains

HPC

Can molecular structure predict the molecular properties?

Computational Chemistry

When multi-bit faults result in application error?

ר

What DL techniques are useful for Energy Modeling of Buildings?

Buildings, Power Grid

MaTEx: Machine Learning Toolkit for Extreme Scale

Proudly Operated by Battelle Since 1965

- 1) Open source software with users in academia, laboratories and industry
- 2) Supports graphics processing unit (GPU), central processing unit (CPU) clusters/ LCFs with high-end systems/interconnects
- 3) Machine Learning Toolkit for Extreme Scale -MaTEx: github.com/matex-org/ matex

Proudly Operated by Baffelle Since 1965

Architectures Supported by MaTEx

Comparing the Performance of NVIDIA DGX-1 and Intel KNL on Deep Learning Workloads, ParLearning'17, IPDPS'17

Demystifying Extreme Scale DL

Supports automatic distribution of HDF5, CSV, PNetCDF formats

Original TF Code

Proudly Operated by Baffelle Since 1965

Example Code Changes

MaTEx-TensorFlow Code

```
import tensorflow as tf
                                                   import tensorflow as tf
   import numpy as np
                                                   import numpy as np
2
                                                 2
3
                                                3
                                                   . . .
4
   from datasets import DataSet
                                                4
5
                                                5
                                                   . . .
   image net = DataSet(...)
                                                6
   data = image_net.training_data
                                                   data = ... # Load training data
                                                7
                                                   labels = ... # Load Labels
   labels = image net.training labels
8
                                                8
9
                                                9
                                                   . . .
   . . .
10
   # Setting up the network
                                                10
                                                   # Setting up the network
11
                                                11
12
   # Setting up optimizer
                                                12
                                                   # Setting up optimizer
13
                                                13
                                                   . . .
   . . .
   init = tf.global variables initializer()
                                              14 init = tf.global variables initializer()
14
   sess = tf.Session()
                                                15 sess = tf.Session()
15
   sess.run(init)
                                                16 sess.run(init)
16
                                                17 . . .
17
   . . .
18
   # Run training regime
                                                18
                                                   # Run training regime
```

Supports automatic distribution of HDF5, CSV, PNetCDF formats

User-transparent Distributed TensorFlow, A. Vishnu et al., Arxiv'17

Proudly Operated by Battelle Since 1965

User-Transparent Distributed Keras

```
import tensorflow as tf
                                             import tensorflow as tf
2 import numpy as np
                                             import numpy as np
3
   # Keras Imports
                                             # Keras Imports
                                          3
4
                                          4
   . . .
                                             . . .
5
                                          5
   dataset = tf.DataSet(...)
6 data = dataset.training_data
                                          6
                                             data = ... # Load training data
   labels = dataset.training_labels
                                             labels = ... # Load Labels
7
8
                                          8
   . . .
                                             . . .
   # Defining Keras Model
                                             # Defining Keras Model
9
                                          9
10 . . .
                                          10
                                             . . .
                                             # Call to Keras training method
11 # Call to Keras training method
                                          11
12
  . . .
                                          12
                                             . . .
```

- 1) Distributed Keras with MPI available on github.com/matex-org/matex
- 2) Currently the only Keras implementation that does not require any MPI specific changes to code
- 3) Tested on NERSC architectures

Proudly Operated by Baffelle Since 1965

Use-Case: SLAC Water/Ice Classification

Reducing the time to new science - From Experiment to Publication

Typical Experiment:

- 1) ~100 images/sec
- 2) ~100 TB of data
- 3) Problem further exacerbated for upcoming LCLS-2 (up to 1M images/sec)
- 4) Several domains exhibit these characteristics

Typical Problems:

- 1) Too many images can we find the important ones?
- 2) Unknown whether the experiment is on the "right track":
 - 1) Results not known till post-hoc data analysis
- 3) If the experiment succeeds:
 - 1) Exorbitant time spent (several man days) in data cleaning/labeling
 - 2) Several man days spent in manual data analysis (such as generating probability distribution functions)

Can we do better?

Sample Proof: Distinguishing Water from Ice

Dataset Specification:

- 1) ~68GB of data consisting of images with Water and Ice crystals
- 2) Scientists spent 17 man days labeling each image as representing Water or Ice
- 3) Objective can we reduce the labeling time, while achieving very high accuracy?
 - 1) We take 4000 samples and consider following data splits:
 - Label 1200 to 2800 samples using Deep Learning (Convolutional + Deep Neural architectures) and see the accuracy on remaining samples (2800 – 1200)
 - Observation: With 2800 samples, we can accurately classify ~97% of remaining samples correctly
- 4) Conclusion: major reduction in labeling time with results matching human labeling
 - 1) Potential for significant reduction in time for scientific discovery
 - 2) Labeling only "boundary" samples would further reduce the human effort

Prototype for Semi-Supervised Learning

Proudly Operated by Battelle Since 1965

Drag instances here to create a new group.

Collaborators

Jeff Daily

Charles Siegel

Vinay Amatya

Leon Song

Ang Li

Joseph Manzano

Garrett Goh

Malachi Schram

Vikas Chandan

Thomas J Lane@SLAC

Proudly Operated by Battelle Since 1965

Thanks!

Contact: <u>abhinav.vishnu@pnnl.gov</u>

MaTEx webpage: <u>https://github.com/matex-org/matex/</u> Publications: https://github.com/matex-org/matex/wiki/publications