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Several scientific applications have shown remarkable improvements in modeling/classification tasks !!



Challenges in Using Deep Learning PacH
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How to design DNN topology?
Which samples are important?

How to handle unlabeled data?

Supercomputers are typically
used for simulation — effective for
DL implementations?

How much effort required for
using DL algorithms?

Will it only reduce time-to-
solution or improve baseline
performance of the model?




Vision for Machine/Deep Learning R&D
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Novel Machine
Learning/Deep
Learning Algorithms

Extreme Scale
ML/DL Algorithms

MaTEx: Machine
Learning Toolkit for
Extreme Scale

DL Applications:
HEP, SLAC, Power
Grid, HPC, Chemistry
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Which neurons are important?
Adaptive Neuron Apoptosis for Accelerating DL
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Novel ML/DL Algorithms: Neuro-genesis Pacilc NoT -
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Can you create neural network topologies semi-automatically?
Generating Neural Networks from BluePrints
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Novel ML/DL Algorithms: Sample Pruning PacH
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Which Samples are Important?
YinYang Deep Learning for Large Scale Systems
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Scaling DL Algorithms Using Asynchronous Pacific Northwest
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Interconnect
(NVLINK, PCI-Ex, InfiniBand)

All-to-All reduction (MHI_Allreduce, NCCL_allreduce)
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Sample Results
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What does Fault Tolerant Deep Learning Pacific Northwest
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Code Snippet of Original Callback Code Snippet for Fault tolerant DL

// Fault tolerant on_gradients_ready
On_gradients_ready(float *buf) {

// Original on_gradients_ready

On_gradients_ready(float *buf) { // conduct in-place allreduce of gradients
rc = MPI_Allreduce (..., ...);

// conduct in-place allreduce of gradients

rc = MPI_Allreduce (..., ...); While (rc != MPI_SUCCESS) {
// shrink the communicator to a new comm.
// average the gradients by communicator size MPIX_Comm_shrink(origcomm, &newcomm);
rc = MPI_Allreduce(..., ...);
}

// average the gradients by communicator size

MPI has been criticized heavily
for lack of fault tolerance support

1) Existing MPI implementation coss Chart For 162"‘*; -
2) User-Level Fault Mitigation “| — sep
3) Reinit Proposal 14]

Which proposal is necessary and sufficient?
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Impact of DL on Other Application Domains PacH
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HPC
Can molecular structure
predict the molecular When multi-bit faults result in application
properties? error?
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What DL techniques are useful for
Energy Modeling of Buildings?

<

Buildings, Power Grid
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1) Open source software with users in academia, laboratories and industry

2) Supports graphics processing unit (GPU), central processing unit (CPU) clusters/
LCFs with high-end systems/interconnects

3) Machine Learning Toolkit for Extreme Scale -MaTEx: github.com/matex-org/
matex

TensorFlow
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Architectures Supported by MaTEx

GPU K20

Arch. (Gemini) K40 R e
Interconnect InfiniBand Ethernet Omni-Path

CPU Xeon (SB, Intel Knights Power 8

Arch. Haswell) Landing

Comparing the Performance of NVIDIA DGX-1 and
Intel KNL on Deep Learning Workloads,
ParLearning’17, IPDPS’17
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Demystifying Extreme Scale DL

Google-TensorFlow MaTEx-TensorFlow
Data Readers Data Readers
TF Scripts _
(gRPC) TF Scripts .
. Requires no
Not attractive g
... TF specific
for scientists!
: TF Runtime changes for
TF Runtime (MPI Changes) users

Architectures Architectures

Supports automatic distribution of HDF5, CSV, PNetCDF formats
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Example Code Changes

MaTEx-TensorFlow Code Original TF Code
1 import tensorflow as tf I import tensorflow as tf
2 import numpy as np 2 import numpy as np
3 ... 3
4 from datasets import DataSet 4
5 ... 5
6 image_net = DataSet (...) 6
7 data = image_net.training_data 7 data = ... # Load training data
8 labels = image_net.training_labels 8 labels = ... # Load Labels
9 ... 9 ...
10 # Setting up the network 10 # Setting up the network
11 ... 11 ...
12 # Setting up optimizer 12 # Setting up optimizer
13 ... 13 ...
14 init = tf.global_variables_initializer() 14 init = tf.global_variables_initializer ()
15 sess = tf.Session() 15 sess = tf.Session()
16 sess.run(init) 16 sess.run(init)
17 ... 17 ...
18 # Run training regime 18 # Run training regime

Supports automatic distribution of HDF5, CSV, PNetCDF formats

User-transparent Distributed TensorFlow, A. Vishnu et al., Arxiv'17
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User-Transparent Distributed Keras

I import tensorflow as tf I import tensorflow as tf

2 import numpy as np 2 import numpy as np

3 # Keras Imports 3 # Keras Imports

4 ... 4

5 dataset = tf.DataSet (...) 5

6 data = dataset.training_data 6 data = ... # Load training data
7 labels = dataset.training_labels 7 labels = ... # Load Labels

8 ... 8 ...

9 # Defining Keras Model 9 # Defining Keras Model

10 ... 10 ...

11 # Call to Keras training method 11 # Call to Keras training method
12 12

changes to code

3) Tested on NERSC architectures

1) Distributed Keras with MPI available on github.com/matex-org/matex
2) Currently the only Keras implementation that does not require any MPI specific
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Use-Case: SLAC Water/Ilce Classification

Reducing the time to new science - From Experiment to Publication

Typical Experiment:

1) ~100 images/sec

2) ~100 TB of data

3) Problem further exacerbated for upcoming LCLS-2 (up to 1M images/sec)
4) Several domains exhibit these characteristics

Typical Problems:
1) Too manyimages — can we find the important ones?
2) Unknown whether the experiment is on the “right track”:
1) Results not known till post-hoc data analysis
3) If the experiment succeeds:
1) Exorbitant time spent (several man days) in data cleaning/labeling
2) Several man days spent in manual data analysis (such as generating probability distribution
functions)

Can we do better?
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Distinguishing Water from Ice

Dataset Specification:
1) ~68GB of data consisting of images with Water
and Ice crystals Testing Accuracy vs. Time (in minutes)
2) Scientists spent 17 man days labeling each Water/Ice dataset
image as representing Water or Ice
3) Objective — can we reduce the labeling time, 0.95
while achieving very high accuracy? '
1) We take 4000 samples and consider 085
following data splits: 0.75
1) Label 1200 to 2800 samples using
Deep Learning (Convolutional + 0:69
Deep Neural architectures) and see | o0ss Q ‘ 100940
the accuracy on remaining samples 0.45
(2800 —1200) 0 20 40 60 80 100 120 140
2) Observation: With 2800 samples, we can
accurately classify ~¥97% of remaining
samples correctly
4) Conclusion: major reduction in labeling time
with results matching human labeling
1) Potential for significant reduction in time
for scientific discovery
2) Labeling only “boundary” samples would
further reduce the human effort

—®—accuracy 1203 —@—accuracy 2005 accuracy 2807 —@=—accuracy 3609
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Prototype for Semi-Supervised Learning 7
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Contact: abhinav.vishnu@pnnl.gov
MaTEx webpage: https://github.com/matex-org/matex/
Publications: https://github.com/matex-org/matex/wiki/publications
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