CIEM

HPC Network Stack on Arm

Pavel Shamis/Pasha Principal Research Engineer

Mvapich User Group Meeting, 2017 Annapolis, MD

© 2017 Arm Limited

Arm Overview

© 2017 Arm Limited

An introduction to Arm

Arm is the world's leading semiconductor intellectual property supplier.

We license to over 350 partners, are present in 95% of smart phones, 80% of digital cameras, 35% of all electronic devices, and a total of 60 billion Arm cores have been shipped since 1990.

Our CPU business model:

License technology to partners, who use it to create their own system-on-chip (SoC) products.

We may license an instruction set architecture (ISA) such as "ARMv8-A")

or a specific implementation, such as "Cortex-A72".

Partners who license an ISA can create their own implementation, as long as it passes the compliance tests.

...and our IP extends beyond the CPU

A partnership business model

A business model that shares success

- Everyone in the value chain benefits
- Long term sustainability

Design once and reuse is fundamental

- Spread the cost amongst many partners
- Technology reused across multiple applications
- Creates market for ecosystem to target
 - Re-use is also fundamental to the ecosystem

Upfront license fee

Covers the development cost

Ongoing royalties

© 2017 Arm Limited

- Typically based on a percentage of chip price
- Vested interest in success of customers

Approximately 1350 licenses Grows by ~120 every year More than 440 potential royalty payers

Range of SoCs addressing infrastructure

One size does not fit all

Orm

Serious Arm HPC deployments starting in 2017 **Two big announcements about Arm in HPC in Europe:**

Bull Atos to Build HPC Prototype for Mont-Blanc Project using Cavium ThunderX2 Processor

🛗 January 16, 2017 by staff 🛛 🔒

Today the Mont-Blanc European project announced it has selected Cavium's ThunderX2 ARM server processor to power its new HPC prototype.

The new Mont-Blanc prototype will be built by Atos, the coordinator of phase 3 of Mont-Blanc, using its Bull expertise and products. The platform will leverage the infrastructure of the Bull sequana pre-exascale supercomputer range for network, management, cooling, and power. Atos and Cavium signed an agreement to

collaborate to develop this new platform, thus making Mont-Blanc an Alpha-site for ThunderX2.

University of BRISTOL

January 17th 2017

Announcing the GW4 Tier 2 HPC service, 'Isambard': named after Isambard Kingdom Brunel

System specs:

- Cray CS-400 system
- 10.000+ ARMv8 cores
- HPC optimised software stack
- Technology comparison:
 - x86, KNL, Pascal
- To be installed March-Dec 2017
- £4.7m total project cost over 3 years

Simon McIntosh Smith, simonm@cs.bris.ac.uk, @simonmcs

bristol.ac.uk

Japan

Post-K: Fujitsu HPC CPU to Support ARM v8 ARM Fujitsu

Post-K fully utilizes Fujitsu proven supercomputer microarchitecture

Fujitsu, as a lead partner of ARM HPC extension development, is working to realize ARM Powered® supercomputer w/ high application performance

ARM v8 brings out the real strength of Fujitsu's microarchitecture

HPC apps acceleration feature	Post-K	FX100	FX10	K computer
FMA: Floating Multiply and Add	~	~	~	~
Math. acceleration primitives*	✓Enhanced	~	~	~
Inter core barrier	~	~	~	~
Sector cache	✓Enhanced	~	~	~
Hardware prefetch assist	✓Enhanced	~	~	~
Tofu interconnect	✓Integrated	✓Integrated	~	~

Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential...

slides from Fujitsu at ISC'16

Integration with Network Interconnects

© 2017 Arm Limited

CCIX

Accelerators and Network (NIC/HCA/etc.) as a first class "citizen" in the system

Seamless process and accelerator hardware cache coherence support

- Low-latency and high-bandwidth
- Allow in-line acceleration
 - Bump in the wire processing (network packet processing, storage acceleration, etc.)

Allows "off-line" acceleration (co-processor model)

Driver-less / interrupt-less usage model

http://www.ccixconsortium.com

Scale-up server node

Shared virtual memory system

CCIX multichip connectivity and topologies

New class of interconnect providing high performance, low latency for new accelerators use cases

- CCIX defines 25GT/s (3x performance*)
- Examining 56GT/s (7x performance*) and beyond
- Enabling low latency via light transaction layer

Flexible, scalable interconnect topologies

• Flexible point-to-point, daisy chained and switched topologies

Simplified deployment by leveraging existing PCIe hardware and software infrastructure

- Runs on existing PCIe transport layer and management stack
- Coexist with legacy PCIe designs

* Note: Based on PCIe Gen3 Performance

Building CCIX devices

Cadence[®] IP for CCIX

• Built upon silicon proven PCIe solutions

IP products:

- Controller IP Provides the CCIX transaction and data link layers.
- PHY IP Provides the high performance SERDES physical layer supporting speeds up to 25Gpbs.
- Verification IP Provides the necessary test infrastructure to verify CCIX designs.

Cadence Controller & PHY IP

Cadence CCIX integration

All data is accessed by some form of a Read or a Write

Example of reads: DDR Row + Column Read, PCI DMA Read, SCSI Write, Socket Read, File Read, RDMA Read

Example of writes: DDR Row + Column Write, PCI DMA Write, SCSI Read, Socket Write, File Write, RDMA Write

The Goal: Simplify world to memory semantic Reads & Writes

Gen-Z Overview

An open, standards-based, scalable, system interconnect and protocol.

Optimized to support memory semantic communications

Breaks Processor-Memory Interlock

Split controller model

- Memory controller
 - Initiates high-level requests—Read, Write, Atomic, Put / Get, etc.
 - Enforces ordering, reliability, path selection, etc.
- Media controller
 - Abstracts memory media
 - Supports volatile / non-volatile / mixed-media
 - Performs media-specific operations
 - Executes requests and returns responses
 - Enables data-centric computing (accelerator, compute, etc.)

Introducing the Scalable Vector Extension (SVE)

A vector extension to the ARMv8-A architecture with some major new features:

Gather-load and scatter-store

Loads a single register from several non-contiguous memory locations.

Per-lane predication

Operations work on individual lanes under control of a predicate register.

for $(i = 0; i < n; ++i)$					
INDEX i	n-2	n-1	n	n+1	
CMPLT n	1	1	0	0	

Predicate-driven loop control and management

Eliminate scalar loop heads and tails by processing partial vectors.

Vector partitioning and software-managed speculation First Faulting Load instructions allow memory accesses to cross into invalid pages.

Extended floating-point horizontal reductions In-order and tree-based reductions trade-off performance and repeatability.

What's the vector length?

There is **no** preferred vector length

- Vector Length (VL) is the CPU implementor's choice, from 128 to 2048 bits, in increments of 128
- Adopting a Vector Length Agnostic (VLA) code generation style makes code portable across all possible vector lengths.
- VLA is made possible by the per-lane predication, predicate-driven loop control, vector partitioning and software-managed speculation features of SVE.
- No need to recompile, or to rewrite handcoded SVE assembler or C intrinsics

Software Eco-system

© 2017 Arm Limited

Arm HPC ecosystem roadmap

Released

Planned

Concept

"The ARM situation has just improved tremendously over the last several years. It used to be a major pain to me, it has gone to almost being entirely painless."

- Linus Torvalds May 2015

Linus Torvalds Image from Linux Foundation. Icons made by Freepik. Logos & trademarks remain the property of their respective owners and represent a range of products and services supported by Linaro.

Celebrating 5 years of Open Source Engineering on ARM

data from June 2014 - May 2015 615,000 downloads from >100 countries

16 Connects 14 Cities on 3 continents

32 member companies Six members at launch

Linaro Connects

1,141,014 More than 220 Engineers from seed of twenty

minutes of videos showing demos, talks and training sessions watched

Linux / FreeBSD w/ AARCH64 support

Open source and commercial compilers

- GCC
 - C, C++, Fortran
 - OpenMP 4.0

LLVM

- C, C++, Fortran
- OpenMP 3.1, (4.0 coming soon)
- Fortran coming QI 2017

- Arm C/C++/Fortran Compiler
 - LLVM based
 - Includes SVE

© 2017 Arm Limited

RDMA Networks

Remote Direct Memory Access (RDMA) – popular hardware network technology

• InfiniBand – 37% of systems in TOP500

https://www.top500.org

VERBs API on Arm

- Besides bug fixes not much work was required
- Mellanox OFED 2.4 and above supports Arm
- Linux Kernel 4.5.0 and above (maybe even earlier)
- Linux Distribution Support on going process
- OFED no ARMv8 support

OpenUCX v1.2

- The first official release from Open UCX community
 - <u>https://github.com/openucx/ucx/releases/tag/v1.2.0</u>
- Features
 - Support for InfiniBand and RoCE
 - Transports RC, UD, DC
 - Support for Accelerated Verbs 40% speedup on Arm compared to vanilla Verbs
 - Support for UGNI API for Aries and Gemini
 - Support for Shared Memory: KNEM, CMA, XPMEM, Posix, SySV
 - Support for x86, ARMv8, Power
 - Efficient memory polling 36% increase in efficiency on Arm
 - UCX interface is integrated with MPICH, OpenMPI, OSHMEM, ORNL-SHMEM, etc.

Programing models

MVAPICH 2.3b – works on ARMv8 !

Open MPI – works on ARMv8

MPICH – compiles and runs on ARMv8

OSHMEM – compiles and runs

Lessons Learned

Memory Barriers

- Multithread environment
- Software-hardware interaction

#define ucs_memory_bus_store_fence() asm volatile ("dsb st" ::: "memory");
#define ucs_memory_bus_load_fence() asm volatile ("dsb ld" ::: "memory");
#define ucs_memory_cpu_fence() asm volatile ("dmb sy" ::: "memory");
#define ucs_memory_cpu_store_fence() asm volatile ("dmb st" ::: "memory");
#define ucs memory cpu load fence() asm volatile ("dmb ld" ::: "memory");

asm volatile ("dsb sy" ::: "memory");

#define ucs_memory_bus_fence()

- Examples <u>https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L25</u>
- You can "fish" for these bugs in MPI implementations around Eager-RDMA and shared memory protocols

Maranget, Luc, Susmit Sarkar, and Peter Sewell. "A tutorial introduction to the Arm and POWER relaxed memory models." Draft available from http://www. cl. cam. ac. uk/~ pes20/ppc-supplemental/test7. pdf (2012).

Lessons Learned – continued

Not all cache-lines are 64Byte !

- Implementation dependent
- 128Byte and 64Byte

http://xeroxnostalgia.com/duplicators/xerox-9200/

Preliminary Results

© 2017 Arm Limited

Testbed

- 2 x Softiron Overdrive 3000 servers with AMD Opteron A1100 / 2GHz
- ConnectX-4 IB/VPI EDR (PCIe gen2 x8)
- Ubuntu 16.04
- MOFED 3.3-1.5.0.0
- UCX [0558b41]
- XPMEM [bdfcc52]
- OSHMEM/OPEN-MPI [fed4849]

Pavel Shamis, M. Graham Lopez, and Gilad Shainer. "Enabling One-sided Communication Semantics on Arm"

Hardware Software Stack Overview

XPMEM

	ХРМЕМ	KNEM	СМА	MMAP
System Call	No	Yes	Yes	No
Low Latency	V	X	X	V
High Bandwidth	V	V	V	V
Any Virtual Address	V	V	V	X
Open Source	V	V	V	V
Upstream Linux	X	X	V	V

XPMEM - Cross Memory Attach

- The code was updated to compile and run on ARMv8 (https://github.com/hjelmn/xpmem)
- 3rd party kernel module based on SGI/Cray XPMEM and maintained by LANL

OpenUCX: XPMEM

Bytes (c)

OpenUCX IB: MLX5 vs Verbs

arm

SHMEM_WAIT()

OpenSHMEM SSCA

37 © 2017 Arm Limited

OpenSHMEM GUPs

7.0e-04 21% 6.0e-04 <u>م</u> Billion Updates per Second 5.0e-04 4.0e-04 3.0e-04 UCP MLX5 (block) - E -UCP VERBS (block) - E -UCP MLX5 (round-robin) -----UCP VERBS (round-robin) ------3 2.0e-04 1.0e-04 2 4 8 16

OpenSHMEM GUPs Benchmark

Developer website : www.arm.com/hpc

A HPC-specific microsite

This is home to our HPC ecosystem offering:

- technical reference material
- how-to guides
- latest news and updates from partners
- downloads of HPC libraries
- third-party software recommendations
- web forum for community discussion and help

Participate and help drive the community

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

arm