
Bringing a scientific application to the
distributed world using PGAS
Performance, Portability and Usability of Fortran Coarrays

Jeffrey Salmond
August 15, 2017

Research Software Engineering
University of Cambridge



Summary

We aim to investigate the

• performance,
• portability and
• usability

of Fortran 2008 coarrays for porting large, complex scientific
applications to distributed memory.

Outline

Coarrays & implementations of coarrays
Synthetic benchmarks
Porting a scientific code: TROVE

1



What are Coarrays

Coarrays are:

• a PGAS extension of Fortran,
• Fortran 2008 adds remote access to variables,
• Fortran 2015 adds collectives, atomics and teams.

real :: x(10)[*]

x(:) = x(:)[1]
!call mpi_get(x, 10, MPI_REAL, 1, disp, 10, MPI_REAL, mywin, ierr)

sync all
!mpi_barrier(MPI_COMM_WORLD, ierr)

call co_sum(x, result_image=1)
!mpi_reduce(x, x, 10, MPI_REAL, MPI_SUM, 0, MPI_COMM_WORLD, ierr)

2



Coarray implementations

F2008 F2015 OpenMP MPI
gfortran + OpenCoarrays ✓ ✓ ✓ ✓
Intel Parallel Studio ✓ × ✓ ✓
OpenUH + GASNet ✓ ? ✓
Cray ✓ ✓ ? ✓

3



Coarray implementations: gfortran + OpenCoarrays

• gfortran frontend generates calls to
libcaf
_gfortran_caf_get (...)

• OpenCoarrays supplies libcaf
• OpenCoarrays libcaf calls into a
standard MPI library

gfortran

Open-
Coarrays

mpi

✓ gfortran + mpi are very widely supported
⇒ can run (almost) anywhere

✓ gfortran can compile most things
× MPI not the ideal target for implementing coarray support
× gasnet backend exists but is ‘unsupported’ (and doesn’t compile)

• Intel implementation uses a similar structure

4



Coarray implementations: OpenUH + GASNet

• OpenUH compiler frontend
• communication backends provided
by GASNet

OpenUH

GASNet

✓ potentially higher performance
× OpenUH as compliant with complex (nasty) science code
× OpenUH not simple to deploy

5



Coarray implementations: using MVAPICH2-X

Use MVPAICH2 MPI

gfortran

Open-
Coarrays

MVAPICH2

Use MVPAICH2-X GASNet conduit

OpenUH

MVAPICH2-
X

6



Synthetic Benchmarks

• EPCC Fortran Coarray micro-benchmark suite
• OSU microbenchmarks.

All measurements performed on with

• Intel Broadwell (E5-2650)
• Mellanox EDR

OpenCoarrays
gfortran 7.1.0 + OpenCoarrays 1.8.10 + MVAPICH2 2.2

Intel
Intel Parallel Studio (Intel compiler + Intel MPI) 17.4

MVPAICH2-X
OpenUH 3.1.0 + MVPIACH2-X 2.2

MPI put/get (using MPI-3 put and get)
gfortran 7.1.0 + MVAPICH2-X 2.2

MPI (p2p) (using MPI send to fake puts and gets)
gfortran 7.1.0 + MVAPICH2-X 2.2 7



Synthetic Benchmarks: Latency

put get
0

1

2

3

4
La
te
nc
y
[m
ic
ro
se
co
nd
s]

OpenCoarrays Intel MVAPICH2-X MPI MPI (pt2pt)
8



Synthetic Benchmarks: Bandwidth

put get
0

2

4

6

8

10

12
Ba
nd
wi
dt
h
[G
B/
s]

OpenCoarrays Intel MVAPICH2-X MPI MPI (pt2pt)
9



TROVE

10



TROVE

• part of the ExoMol (exoplanet molecular line search) project
• looking at the composition of atmospheres on exoplanets
• ultimately searching for aliens!

TROVE has been developed by Sergey Yurchenko (currently at UCL)

• under active development with many contributors
• written in modern Fortran
• developed targeting shared memory :-(
• ∼ 160k lines of code

11



TROVE: Why distributed memory

• TROVE has long run-times (>1M CPU Hours)
• Construction & diagonalisation of 1000s of matrices
• Matrices of size 1M x 1M
• Scientists want to compute bigger problems

Why Coarrays?

• Translating a large code base to distributed memory is daunting
• Maintainers prefer not to use MPI
• PGAS approach allows an ‘ incremental’ approach

12



TROVE: code before

g = 0

$!omp parallel do private(h,phi,D) reduce(+:g)
do iterm = 1, N

phi = !construct Hamiltonian
D = !construct basis set
h = matmul(transpose(D), matmul(phi, D))

g = g + h
enddo
$!omp end parallel do

call diagonalize(g)

• Each loop iteration takes >10 seconds
⇒ almost embarrassingly parallel 13



TROVE: code after

g = 0
do iterm = 1, N

if (mod(iterm, num_images()) /= this_image()) cycle

phi = !construct Hamiltonian
D = !construct basis set
h = matmul(transpose(D), matmul(phi, D))

g = g + h
enddo

call co_sum(g)
call diagonalize(g)

• very few changes required from OpenMP
• scheduling is basic 14



TROVE: Results

Coarrays implementation works!

Before
Ideal scaling on 4 socket node

After
Ideal scaling on 4 nodes with 1
socket each

Problems

• TROVE not compatible with OpenUH
⇒ can’t use MVAPICH2-X :-(

Future Work

• Extracting more parallelism
• MPI interoperability

15



Wishlist

Building a coarray implementation with gfortran and an MVAPICH2-X
based libcaf.

• gfortran frontend generates calls to
libcaf

• a new implementation of libcaf
• this new libcaf calls MVAPICH2-X

gfortran

new libcaf

MVAPICH2-
X

• combines the portable and friendly gfortran
• with the high-performance of MVAPICH2-X

16



Thank you!

16


	Coarrays & implementations of coarrays
	Synthetic benchmarks
	Porting a scientific code: TROVE

