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Summary

We aim to investigate the

• performance,
• portability and
• usability

of Fortran 2008 coarrays for porting large, complex scientific
applications to distributed memory.

Outline

Coarrays & implementations of coarrays
Synthetic benchmarks
Porting a scientific code: TROVE
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What are Coarrays

Coarrays are:

• a PGAS extension of Fortran,
• Fortran 2008 adds remote access to variables,
• Fortran 2015 adds collectives, atomics and teams.

real :: x(10)[*]

x(:) = x(:)[1]
!call mpi_get(x, 10, MPI_REAL, 1, disp, 10, MPI_REAL, mywin, ierr)

sync all
!mpi_barrier(MPI_COMM_WORLD, ierr)

call co_sum(x, result_image=1)
!mpi_reduce(x, x, 10, MPI_REAL, MPI_SUM, 0, MPI_COMM_WORLD, ierr)
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Coarray implementations

F2008 F2015 OpenMP MPI
gfortran + OpenCoarrays ✓ ✓ ✓ ✓
Intel Parallel Studio ✓ × ✓ ✓
OpenUH + GASNet ✓ ? ✓
Cray ✓ ✓ ? ✓
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Coarray implementations: gfortran + OpenCoarrays

• gfortran frontend generates calls to
libcaf
_gfortran_caf_get (...)

• OpenCoarrays supplies libcaf
• OpenCoarrays libcaf calls into a
standard MPI library

gfortran

Open-
Coarrays

mpi

✓ gfortran + mpi are very widely supported
⇒ can run (almost) anywhere

✓ gfortran can compile most things
× MPI not the ideal target for implementing coarray support
× gasnet backend exists but is ‘unsupported’ (and doesn’t compile)

• Intel implementation uses a similar structure
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Coarray implementations: OpenUH + GASNet

• OpenUH compiler frontend
• communication backends provided
by GASNet

OpenUH

GASNet

✓ potentially higher performance
× OpenUH as compliant with complex (nasty) science code
× OpenUH not simple to deploy
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Coarray implementations: using MVAPICH2-X

Use MVPAICH2 MPI

gfortran

Open-
Coarrays

MVAPICH2

Use MVPAICH2-X GASNet conduit

OpenUH

MVAPICH2-
X
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Synthetic Benchmarks

• EPCC Fortran Coarray micro-benchmark suite
• OSU microbenchmarks.

All measurements performed on with

• Intel Broadwell (E5-2650)
• Mellanox EDR

OpenCoarrays
gfortran 7.1.0 + OpenCoarrays 1.8.10 + MVAPICH2 2.2

Intel
Intel Parallel Studio (Intel compiler + Intel MPI) 17.4

MVPAICH2-X
OpenUH 3.1.0 + MVPIACH2-X 2.2

MPI put/get (using MPI-3 put and get)
gfortran 7.1.0 + MVAPICH2-X 2.2

MPI (p2p) (using MPI send to fake puts and gets)
gfortran 7.1.0 + MVAPICH2-X 2.2 7



Synthetic Benchmarks: Latency
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Synthetic Benchmarks: Bandwidth
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TROVE
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TROVE

• part of the ExoMol (exoplanet molecular line search) project
• looking at the composition of atmospheres on exoplanets
• ultimately searching for aliens!

TROVE has been developed by Sergey Yurchenko (currently at UCL)

• under active development with many contributors
• written in modern Fortran
• developed targeting shared memory :-(
• ∼ 160k lines of code
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TROVE: Why distributed memory

• TROVE has long run-times (>1M CPU Hours)
• Construction & diagonalisation of 1000s of matrices
• Matrices of size 1M x 1M
• Scientists want to compute bigger problems

Why Coarrays?

• Translating a large code base to distributed memory is daunting
• Maintainers prefer not to use MPI
• PGAS approach allows an ‘ incremental’ approach
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TROVE: code before

g = 0

$!omp parallel do private(h,phi,D) reduce(+:g)
do iterm = 1, N

phi = !construct Hamiltonian
D = !construct basis set
h = matmul(transpose(D), matmul(phi, D))

g = g + h
enddo
$!omp end parallel do

call diagonalize(g)

• Each loop iteration takes >10 seconds
⇒ almost embarrassingly parallel 13



TROVE: code after

g = 0
do iterm = 1, N

if (mod(iterm, num_images()) /= this_image()) cycle

phi = !construct Hamiltonian
D = !construct basis set
h = matmul(transpose(D), matmul(phi, D))

g = g + h
enddo

call co_sum(g)
call diagonalize(g)

• very few changes required from OpenMP
• scheduling is basic 14



TROVE: Results

Coarrays implementation works!

Before
Ideal scaling on 4 socket node

After
Ideal scaling on 4 nodes with 1
socket each

Problems

• TROVE not compatible with OpenUH
⇒ can’t use MVAPICH2-X :-(

Future Work

• Extracting more parallelism
• MPI interoperability
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Wishlist

Building a coarray implementation with gfortran and an MVAPICH2-X
based libcaf.

• gfortran frontend generates calls to
libcaf

• a new implementation of libcaf
• this new libcaf calls MVAPICH2-X

gfortran

new libcaf

MVAPICH2-
X

• combines the portable and friendly gfortran
• with the high-performance of MVAPICH2-X
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Thank you!
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