
LLNL-PRES-736917

This work was perf ormed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MVAPICH: How a Bunch of Buckeyes Crack
Tough Nuts
5th Annual MVAPICH User Group Meeting

August 15, 2017

Adam Moody
Livermore Computing

Who is LLNL?

LLNL-PRES-736917

3

LLNL’s mission is applying world-class science, technology, and
engineering to national & global problems

Bio-Security Counterterrorism Defense Energy

Intelligence Nonproliferation Science Weapons

https://missions.llnl.gov

LLNL-PRES-736917

4

LLNL systems by purpose
System

Top500

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory

(GB)

Peak

TFLOP/s

Peak

TFLOP/s

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

Capability

Capacity

Visualization

Serial

LLNL-PRES-736917

5

System

Top500

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory

(GB)

Peak

TFLOP/s

Peak

TFLOP/s

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

LLNL-PRES-736917

6

Why MVAPICH?

▪ First MPI available for IB, enabled IB for HPC

▪ Reliable and proven

▪ Fastest for many users

▪ Familiarity with MPICH code base

▪ Acceptance of feedback and patches

▪ Good ties and communication with OSU

Science with MVAPICH

LLNL-PRES-736917

8

Climate Change

Climate scientist Ben Santer adds, “We
know that Earth’s climate system is going to
experience profound changes, such as large-
scale warming and moistening of the
atmosphere, rising sea levels, retreat of
snow and sea-ice cover, and increases in the
frequency and intensity of heat waves, but
the regional and seasonal details of these
changes are much fuzzier.”

Predicting these details with precision and
confidence and delivering information that
can help countries and communities make
resource-planning decisions will require
enhanced models and exaflop-scale
computing capabilities.

https://str.llnl.gov/september-2015/carnes UCRL-TR-52000-15-9

https://str.llnl.gov/september-2015/carnes

LLNL-PRES-736917

9

Carbon Capture

▪ Public toolset to evaluate different
carbon capture technologies

▪ The CCSI toolset addresses key
industry challenges such as gaining
a better understanding of sources
of error (or uncertainty) in process-
simulation results, quantifiying and
reducing that uncertainty, and
assessing the risks of scaling up a
particular technology.

https://str.llnl.gov/january-2017/tong UCRL-TR-52000-17-1/2

https://str.llnl.gov/january-2017/tong

LLNL-PRES-736917

10

Rare Earth Elements for Renewable Energy

The Department of Energy’s Critical
Materials Institute (CMI) is working to
ensure the nation has adequate supplies of
certain scarce materials that are essential to
the U.S. clean-energy industry.

These materials are found in a wide array of
products, including magnets, catalysts,
metallurgical additives, phosphors, polishing
powders, and ceramics.

Livermore scientists are supporting CMI
objectives by developing new alloys and
substitute materials that reduce the need
for rare-earth elements in high-efficiency
motors, magnets, and fluorescent
lightbulbs, as well as producing novel
methods to reuse and recycle existing
materials.
https://str.llnl.gov/april-2016/schwegler UCRL-TR-52000-16-4/5

https://str.llnl.gov/january-2017/tong

LLNL-PRES-736917

11

Additive Manufacturing

Livermore chemist James Lewicki says,
“Carbon fiber is the ultimate structural
material. If we could make everything out of
carbon fiber, we probably would, but it’s been
waiting in the wings for years because it’s so
difficult to make in complex shapes.”

Fluid analyst Yuliya Kanarskaadds, “With our
code, we can simulate the evolution of the
fiber orientations in 3D under different
printing conditions to find the optimal fiber
length and optimal performance.”

Simulation results both validated and
explained what was observed
experimentally—that with the right
ingredients in the right ratio and the right
nozzle size and shape, the resin can efficiently
deliver carbon fibers without clogging the
printer.
https://str.llnl.gov/june-2017/lewicki UCRL-TR-52000-17-6

https://str.llnl.gov/june-2017/lewicki

LLNL-PRES-736917

12

Cancer Research

https://str.llnl.gov/november-2016/streitz UCRL-TR-52000-16-10/11

A historic partnership between the

Department of Energy (DOE) and the

National Cancer Institute (NCI) is

applying the formidable computing

resources at Livermore and other DOE

national laboratories to advance cancer

research and treatment.

Announced in late 2015, the effort will

help researchers and physicians better

understand the complexity of cancer,

choose the best treatment options for

every patient, and reveal possible

patterns hidden in vast patient and

experimental data sets.

https://str.llnl.gov/november-2016/streitz

LLNL-PRES-736917

13

Asteroid Deflection

▪ Model how asteroid trajectory
changes after impact from spacecraft

▪ DART: Joint mission with JHU APL to
launch a test in 2020

https://str.llnl.gov/december-2016/syal UCRL-TR-52000-16-12

http://youtu.be/xXCxMeZ-yQo

https://str.llnl.gov/december-2016/syal
http://youtu.be/xXCxMeZ-yQo

What’s next at LLNL?

LLNL-PRES-736917

15

Commodity Technology Systems (CTS-1)
PSM2 in spades with MVAPICH

▪ Upgraded Linux Systems

▪ Delivery from 2016 through 2018

▪ ~6600 total nodes so far and counting
• Dual socket, 18-core Intel Xeon E5-2695, 2.10GHz

• Intel Omni-Path (PSM2) in tapered fat-tree

▪ MVAPICH2-2.2 selected as default MPI

▪ Systems to last 5+ years

▪ Many more years with MVAPICH

https://www.llnl.gov/news/labs-tap-silicon-valley-bolster-computing

https://www.llnl.gov/news/labs-tap-silicon-valley-bolster-computing

LLNL-PRES-736917

16

The Sierra system that will replace Sequoia
features a GPU-accelerated architecture

Mellanox Interconnect

Dual-rail EDR Infiniband

IBM POWER9

• NVLink

NVIDIA Volta

• HBM2

• NVLink

Components

Compute Node

2 IBM POWER9 CPUs

4 or 6 NVIDIA Volta GPUs

NVMe-compatible PCIe 800GB SSD

512 GB DDR4

Globally addressable HBM2

associated with GPUs

Coherent Shared Memory

Compute Rack
Standard 19”

Warm water cooling

Compute System
3400 -4200 nodes

2.1 – 2.7 PB Memory

120 -150 PFLOPS

10 MW

GPFS File System
182 PB usable storage

2.5/1.8 TB/s R/W

bandwidth

LLNL-PRES-736917

17

GPUS are coming… big time… finally!

▪ Sierra system will be loaded with
GPUS

▪ Codes are porting to use GPUs
now

— Some doing direct CUDA
programming

— Many using programming
abstractions like RAJA

▪ After porting, we expect high
demand for GPUs on future
systems

Needs More Parallel

LLNL-PRES-736917

19

RAJA is a C++ abstraction layer enabling portability with
small disruption to application programming styles

The main goal of RAJA is to balance performance…

▪ Augment compiler’s ability to optimize C++ code
— Enable work-arounds when performance is not what’s expected

▪ Support various forms of fine-grained (on-node) parallelism
— Facilitate use of common programming models (OpenMP, CUDA, TBB, OpenACC, ...)

… and developer productivity

▪ Applications maintain single-source kernels
— Don’t bind an application to a particular programming model

— Easy integration with application data structures and algorithms

▪ Clear separation of responsibilities
— RAJA: Execute loop iterations, encapsulate hardware & programming model details

— Application: Select loop iteration patterns and execution policies with RAJA API

RAJA development is currently driven by the needs of

ATDM/ASC applications at LLNL and ECP collaborators

LLNL-PRES-736917

20

▪ RAJA decouples loop iteration and loop body

— Iterations are “tasks” – aggregate, reorder, etc.

▪ RAJA Concepts:

— Patterns: forall, forallN, reduce, scan

— Policies: sequential, simd, openmp, cuda, ….

— Index: iterations – aggregate, reorder, tile,

RAJA concepts “orthogonalize” and encapsulate
loop execution details

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;

for (int i = begin; i < end; ++i) {
y[i] += a * x[i] ;
tsum += y[i] ;
if (y[i] < tmin) tmin = y[i];

}

C-style for-loop

RAJA-style loop

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

Execution patterns & policies
(scheduling, PM choice, etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

Loop body is mostly unchanged (C++ lambda function).

IndexSets
(iteration space, ordering, etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

Portable Reduction types

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});
https://github.com/LLNL/RAJA

https://github.com/LLNL/RAJA

LLNL-PRES-736917

21

▪ “Light touch”
— Works with our existing application data structures & algorithms – loop

bodies require little change if any

▪ “Low barrier to entry”
— Add parallelism selectively & incrementally without changing the way

existing algorithms appear in source code

▪ “Application-facing design philosophy”
— Concepts are easy to grasp for (non-CS) application developers
— Constructs map naturally to apps and are easy to customize

▪ “Performance”
— RAJA does well with “streaming” kernels that are prevalent in LLNL codes
— Designed for coarse-grained synchronization – can greatly reduce resource

contention and memory synchronization vs. finer-grained techniques

Why we prefer RAJA over alternatives

LLNL-PRES-736917

22

RAJA performance on CoMD across platforms
(from 2015)

https://software.llnl.gov/RAJA/_static/RAJAOverview-Trilab-09.2015_LLNL-TR-677453.pdf

https://software.llnl.gov/RAJA/_static/RAJAOverview-Trilab-09.2015_LLNL-TR-677453.pdf

LLNL-PRES-736917

23

Xbraid – Parallelizing across time and space

https://str.llnl.gov/september-2016/diachin UCRL-TR-52000-16-9

https://computation.llnl.gov/projects/parallel-time-integration-multigrid

Developing algorithms that

account for known

architectural trends such as

reducing data movement

and allowing for many more

actions to happen in

parallel, or simultaneously.

The latter is particularly

critical because future

speedups for applications

will likely happen only

through greater parallelism.

https://str.llnl.gov/september-2016/diachin
https://str.llnl.gov/september-2016/diachin

Applying HPC to

Deep Learning

LLNL-PRES-736917

25

Applying HPC to Deep Learning:
Livermore Big Artificial Neural Network (LBANN)

▪ Framework for training deep neural
networks on HPC systems using MPI

▪ Supports
— data-parallel

— model-parallel

— multiple models

▪ Distributed Matrix Multiply with Elemental
Linear Algebra Library

▪ CPUs and/or GPUs

▪ Parallel I/O and data augmentation
— Uses node-local storage if available

— Optimized for Lustre

https://str.llnl.gov/june-2016/chen UCRL-TR-52000-16-6

https://github.com/LLNL/lbann

https://str.llnl.gov/june-2016/chen
https://github.com/LLNL/lbann

LLNL-PRES-736917

26

LBANN strong scaling
(distributed matrix multiply with MPI)

▪ # nodes versus mini-batch training
time

▪ Processing multiple images per step

▪ Test
— 50K neurons

— 8-128 nodes, 12 ranks per node

— Mini-batch sizes from 8-2048 images

▪ Large mini-batches benefit greatly
from additional nodes

▪ Smaller mini-batches have limited
improvement beyond 16 or 32
nodes
— Insufficient work to effectively

amortize communication overheads

Applying Deep Learning

To HPC

LLNL-PRES-736917

28

Applying Deep Learning to HPC:
1. Predicting HPC Job Behavior

#!/bin/bash
#PBS –l partition=cab
#PBS –l nodes=4
#PBS –l walltime=16:00:00
#PBS –q pbatch

cd $HOME/project_A
srun –n 64 ./GEOS –i
Prop_bx_2a.xml

▪ Apply machine learning to
predict HPC job behavior like run
time, IO, networking, and power

— Better backfill

— Schedule jobs for IO and power

▪ Use DNN w/ CNN on inputs like
job scripts, job environment,
input deck

▪ Michael R. Wyatt II,
Michela Taufer (Advisor)
University of Delaware

LLNL-PRES-736917

29

Applying Deep Learning to HPC:
2. Self-driving codes

Goal: Apply machine learning to predict
simulation failures and proactively avoid
them

ALE simulations use dynamic meshes to simulate complex
dynamics

• They fail frequently
• Mesh geometry: mesh zone tangling
• Physical quantities: anomalous hot spots

Mesh zone tangling

High Vorticity

Feasibility demonstration: Successfully predicted and
automatically avoided different mesh tangling conditions using 3
test cases – Helium bubble, shock tube, simple hohlraum

Challenges to MVAPICH

LLNL-PRES-736917

31

System

Top500

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory

(GB)

Peak

TFLOP/s

Peak

TFLOP/s

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

▪ Request to port
MVAPICH to CORAL

▪ CORAL EA

• POWER8

• Dual Mellanox EDR

• NVIDIA Pascal

▪ CORAL (Sierra)
• POWER9

• Dual Mellanox EDR

• NVIDIA Volta

LLNL-PRES-736917

32

MVAPICH diversity within LC

System

Top500

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory

(GB)

Peak

TFLOP/s

Peak

TFLOP/s

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

PSM

PSM2

Mellanox +

 NVIDIA

Shared Mem

POWER +

 Mellanox +

 NVIDIA

▪ RPM needed for
each color

▪ Careful to install
correct RPM on
each machine

▪ Static linking: need
to relink app for
each machine (and
use correct one)

▪ Similar problem for
apps using Spack

▪ Lots of builds and
difficult to manage

LLNL-PRES-736917

33

Building MPI:
A Nightmare of Permutations

▪ Multiple compilers
• GNU, Intel, PGI

• several versions of each

▪ Multiple MPI
implementations
• MVAPICH, MVAPICH2,

Open MPI

• 2-3 versions of each

• normal + debug

▪ Multiple system types

MPI

Compilers

x MPI

Versions

x (Normal +

Debug)

x Platforms

= Total

Open MPI MVAPICH2

3 3

3 3

2 2

1 4

18 72 !!!

LLNL-PRES-736917

34

Compiler and Library Observations

GNU

MVAPICH

GNU

OpenMPI

Intel-MPI Intel

MVAPICH

Intel*

OpenMPI

PGI

OpenMPI

Allreduce

(36ppn)
✅ ❌ ✅ ❌ ❌

MPI_Send

MPI_Recv
✅ ✅

RMA Get ✅ ✅ ❌ ✅ ✅ ✅

RMA Put

(low PPN)
❌ ❌ ✅ ❌ ❌ ❌

RMA Put

(high PPN)
✅ ✅ ❌ ✅ ✅ ✅

Consistent

Put & Get
✅

empty cells are neither good nor bad

LLNL-PRES-736917

35

▪ Thread multiple becoming more common

▪ Non-blocking collectives w/ async progress

▪ Network offload where possible
— Collectives
— Tag matching
— Rendezvous handshake

▪ Reduce pt2pt latency (lots of latency bound apps)

HPC apps needs from MPI

LLNL-PRES-736917

36

▪ Improve Allreduce algorithms for user-defined datatypes/ops
— Allreduce on compressed data

▪ Improve support for large-bandwidth messages

▪ Support for non-blocking Allreduce and pt-2-pt
— Overlap messages with backprop steps

▪ Higher precision accumulate for low-precision inputs
— e.g., 32-bit Allreduce on 16-bit data

▪ NCCL-like performance from MPI collectives

Deep learning needs from MPI

LLNL-PRES-736917

37

Thanks to MVAPICH and
to the NOWLAB Nutcrackers!

