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LLNL’s mission is applying world-class science, technology, and 
engineering to national & global problems

Bio-Security Counterterrorism Defense Energy

Intelligence Nonproliferation Science Weapons

https://missions.llnl.gov
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LLNL systems by purpose
System

Top500 

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory 

(GB)

Peak 

TFLOP/s

Peak 

TFLOP/s 

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

Capability

Capacity

Visualization

Serial
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Why MVAPICH?

▪ First MPI available for IB, enabled IB for HPC

▪ Reliable and proven

▪ Fastest for many users

▪ Familiarity with MPICH code base

▪ Acceptance of feedback and patches

▪ Good ties and communication with OSU



Science with MVAPICH
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Climate Change

Climate scientist Ben Santer adds, “We 
know that Earth’s climate system is going to 
experience profound changes, such as large-
scale warming and moistening of the 
atmosphere, rising sea levels, retreat of 
snow and sea-ice cover, and increases in the 
frequency and intensity of heat waves, but 
the regional and seasonal details of these 
changes are much fuzzier.”

Predicting these details with precision and 
confidence and delivering information that 
can help countries and communities make 
resource-planning decisions will require 
enhanced models and exaflop-scale 
computing capabilities.

https://str.llnl.gov/september-2015/carnes UCRL-TR-52000-15-9

https://str.llnl.gov/september-2015/carnes
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Carbon Capture

▪ Public toolset to evaluate different 
carbon capture technologies

▪ The CCSI toolset addresses key 
industry challenges such as gaining 
a better understanding of sources 
of error (or uncertainty) in process-
simulation results, quantifiying and 
reducing that uncertainty, and 
assessing the risks of scaling up a 
particular technology.

https://str.llnl.gov/january-2017/tong UCRL-TR-52000-17-1/2

https://str.llnl.gov/january-2017/tong
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Rare Earth Elements for Renewable Energy

The Department of Energy’s Critical 
Materials Institute (CMI) is working to 
ensure the nation has adequate supplies of 
certain scarce materials that are essential to 
the U.S. clean-energy industry.

These materials are found in a wide array of 
products, including magnets, catalysts, 
metallurgical additives, phosphors, polishing 
powders, and ceramics.

Livermore scientists are supporting CMI 
objectives by developing new alloys and 
substitute materials that reduce the need 
for rare-earth elements in high-efficiency 
motors, magnets, and fluorescent 
lightbulbs, as well as producing novel 
methods to reuse and recycle existing 
materials.
https://str.llnl.gov/april-2016/schwegler UCRL-TR-52000-16-4/5

https://str.llnl.gov/january-2017/tong
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Additive Manufacturing

Livermore chemist James Lewicki says, 
“Carbon fiber is the ultimate structural 
material. If we could make everything out of 
carbon fiber, we probably would, but it’s been 
waiting in the wings for years because it’s so 
difficult to make in complex shapes.”

Fluid analyst Yuliya Kanarskaadds, “With our 
code, we can simulate the evolution of the 
fiber orientations in 3D under different 
printing conditions to find the optimal fiber 
length and optimal performance.”

Simulation results both validated and 
explained what was observed 
experimentally—that with the right 
ingredients in the right ratio and the right 
nozzle size and shape, the resin can efficiently 
deliver carbon fibers without clogging the 
printer.
https://str.llnl.gov/june-2017/lewicki UCRL-TR-52000-17-6

https://str.llnl.gov/june-2017/lewicki
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Cancer Research

https://str.llnl.gov/november-2016/streitz UCRL-TR-52000-16-10/11

A historic partnership between the 

Department of Energy (DOE) and the 

National Cancer Institute (NCI) is 

applying the formidable computing 

resources at Livermore and other DOE 

national laboratories to advance cancer 

research and treatment.

Announced in late 2015, the effort will 

help researchers and physicians better 

understand the complexity of cancer, 

choose the best treatment options for 

every patient, and reveal possible 

patterns hidden in vast patient and 

experimental data sets.

https://str.llnl.gov/november-2016/streitz
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Asteroid Deflection

▪ Model how asteroid trajectory 
changes after impact from spacecraft

▪ DART: Joint mission with JHU APL to 
launch a test in 2020

https://str.llnl.gov/december-2016/syal UCRL-TR-52000-16-12

http://youtu.be/xXCxMeZ-yQo

https://str.llnl.gov/december-2016/syal
http://youtu.be/xXCxMeZ-yQo


What’s next at LLNL?
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Commodity Technology Systems (CTS-1)
PSM2 in spades with MVAPICH

▪ Upgraded Linux Systems

▪ Delivery from 2016 through 2018

▪ ~6600 total nodes so far and counting
• Dual socket, 18-core Intel Xeon E5-2695, 2.10GHz

• Intel Omni-Path (PSM2) in tapered fat-tree

▪ MVAPICH2-2.2 selected as default MPI

▪ Systems to last 5+ years

▪ Many more years with MVAPICH

https://www.llnl.gov/news/labs-tap-silicon-valley-bolster-computing

https://www.llnl.gov/news/labs-tap-silicon-valley-bolster-computing
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The Sierra system that will replace Sequoia 
features a GPU-accelerated architecture 

Mellanox Interconnect

Dual-rail EDR Infiniband

IBM POWER9

• NVLink

NVIDIA Volta

• HBM2

• NVLink

Components

Compute Node

2 IBM POWER9  CPUs

4 or 6 NVIDIA Volta GPUs

NVMe-compatible PCIe 800GB SSD

512 GB DDR4 

Globally addressable HBM2 

associated with GPUs

Coherent Shared Memory 

Compute Rack
Standard 19” 

Warm water cooling

Compute System
3400 -4200 nodes

2.1 – 2.7 PB Memory

120 -150 PFLOPS

10 MW 

GPFS File System
182 PB usable storage

2.5/1.8 TB/s R/W 

bandwidth
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GPUS are coming… big time… finally!

▪ Sierra system will be loaded with 
GPUS

▪ Codes are porting to use GPUs 
now

— Some doing direct CUDA 
programming

— Many using programming 
abstractions like RAJA

▪ After porting, we expect high 
demand for GPUs on future 
systems



Needs More Parallel



LLNL-PRES-736917

19

RAJA is a C++ abstraction layer enabling portability with 
small disruption to application programming styles 

The main goal of RAJA is to balance performance…

▪ Augment compiler’s ability to optimize C++ code
— Enable work-arounds when performance is not what’s expected

▪ Support various forms of fine-grained (on-node) parallelism
— Facilitate use of common programming models (OpenMP, CUDA, TBB, OpenACC, ...)

… and developer productivity

▪ Applications maintain single-source kernels
— Don’t bind an application to a particular programming model

— Easy integration with application data structures and algorithms

▪ Clear separation of responsibilities
— RAJA: Execute loop iterations, encapsulate hardware & programming model details

— Application: Select loop iteration patterns and execution policies with RAJA API

RAJA development is currently driven by the needs of 

ATDM/ASC applications at LLNL and ECP collaborators
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▪ RAJA decouples loop iteration and loop body

— Iterations are “tasks” – aggregate, reorder, etc.

▪ RAJA Concepts:

— Patterns: forall, forallN, reduce, scan

— Policies: sequential, simd, openmp, cuda, ….

— Index: iterations – aggregate, reorder, tile, ....

RAJA concepts “orthogonalize” and encapsulate 
loop execution details

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;

for ( int i = begin; i < end; ++i )  {
y[i] += a * x[i] ;
tsum += y[i] ;
if ( y[i] < tmin ) tmin = y[i];

}

C-style for-loop

RAJA-style loop

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > ( IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min( y[i] );

}  );

Execution patterns & policies 
(scheduling, PM choice, etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > ( IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min( y[i] );

}  );

Loop body is mostly unchanged (C++ lambda function).

IndexSets
(iteration space, ordering, etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > ( IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min( y[i] );

}  );

Portable Reduction types

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > ( IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min( y[i] );

}  );
https://github.com/LLNL/RAJA

https://github.com/LLNL/RAJA
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▪ “Light touch”
— Works with our existing application data structures & algorithms – loop 

bodies require little change if any

▪ “Low barrier to entry”
— Add parallelism selectively & incrementally without changing the way 

existing algorithms appear in source code

▪ “Application-facing design philosophy”
— Concepts are easy to grasp for (non-CS) application developers
— Constructs map naturally to apps and are easy to customize

▪ “Performance”
— RAJA does well with “streaming” kernels that are prevalent in LLNL codes
— Designed for coarse-grained synchronization – can greatly reduce resource 

contention and memory synchronization vs. finer-grained techniques

Why we prefer RAJA over alternatives
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RAJA performance on CoMD across platforms 
(from 2015)

https://software.llnl.gov/RAJA/_static/RAJAOverview-Trilab-09.2015_LLNL-TR-677453.pdf

https://software.llnl.gov/RAJA/_static/RAJAOverview-Trilab-09.2015_LLNL-TR-677453.pdf
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Xbraid – Parallelizing across time and space

https://str.llnl.gov/september-2016/diachin UCRL-TR-52000-16-9

https://computation.llnl.gov/projects/parallel-time-integration-multigrid

Developing algorithms that 

account for known 

architectural trends such as 

reducing data movement 

and allowing for many more 

actions to happen in 

parallel, or simultaneously.

The latter is particularly 

critical because future 

speedups for applications 

will likely happen only 

through greater parallelism.

https://str.llnl.gov/september-2016/diachin
https://str.llnl.gov/september-2016/diachin


Applying HPC to

Deep Learning
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Applying HPC to Deep Learning:
Livermore Big Artificial Neural Network (LBANN)

▪ Framework for training deep neural 
networks on HPC systems using MPI

▪ Supports
— data-parallel

— model-parallel

— multiple models

▪ Distributed Matrix Multiply with Elemental 
Linear Algebra Library

▪ CPUs and/or GPUs

▪ Parallel I/O and data augmentation
— Uses node-local storage if available

— Optimized for Lustre

https://str.llnl.gov/june-2016/chen UCRL-TR-52000-16-6

https://github.com/LLNL/lbann

https://str.llnl.gov/june-2016/chen
https://github.com/LLNL/lbann
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LBANN strong scaling
(distributed matrix multiply with MPI)

▪ # nodes versus mini-batch training 
time

▪ Processing multiple images per step

▪ Test
— 50K neurons

— 8-128 nodes, 12 ranks per node

— Mini-batch sizes from 8-2048 images

▪ Large mini-batches benefit greatly 
from additional nodes

▪ Smaller mini-batches have limited 
improvement beyond 16 or 32 
nodes
— Insufficient work to effectively 

amortize communication overheads



Applying Deep Learning

To HPC
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Applying Deep Learning to HPC:
1. Predicting HPC Job Behavior

#!/bin/bash
#PBS –l partition=cab
#PBS –l nodes=4
#PBS –l walltime=16:00:00
#PBS –q pbatch

cd $HOME/project_A
srun –n 64 ./GEOS –i
Prop_bx_2a.xml

▪ Apply machine learning to 
predict HPC job behavior like run 
time, IO, networking, and power

— Better backfill

— Schedule jobs for IO and power

▪ Use DNN w/ CNN on inputs like 
job scripts, job environment, 
input deck

▪ Michael R. Wyatt II,
Michela Taufer (Advisor)
University of Delaware
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Applying Deep Learning to HPC:
2. Self-driving codes

Goal: Apply machine learning to predict 
simulation failures and proactively avoid 
them

ALE simulations use dynamic meshes to simulate complex 
dynamics

• They fail frequently
• Mesh geometry: mesh zone tangling
• Physical quantities: anomalous hot spots

Mesh zone tangling

High Vorticity

Feasibility demonstration:  Successfully predicted and 
automatically avoided different mesh tangling conditions using 3 
test cases – Helium bubble, shock tube, simple hohlraum



Challenges to MVAPICH
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System

Top500 

Rank Program

Manufacture

/ Model OS

Inter-

connect

A

v

g Nodes Cores

Memory 

(GB)

Peak 

TFLOP/s

Peak 

TFLOP/s 

(GPUs)

Unclassified Network (OCF)

Vulcan 23 ASC+M&IC+HPCIC IBM BGQ RHEL/CNK 5D Torus TBD24,576 393,216 393,216 5,033.2

Cab (TLCC2) ASC+M&IC+HPCIC Appro TOSS IB QDR 1,296 20,736 41,472 426.0

Quartz 46 ASC+M&IC Penguin TOSS Omni-Path TBD2,688 96,768 344,064 3251.4

RZTopaz ASC Penguin TOSS Omni-Path 768 27,648 98,304 929.0

RZManta ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.8

Ray ASC+M&IC IBM RHEL IB EDR 54 1,080 17,280 896.4 1015.2

Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

▪ Request to port 
MVAPICH to CORAL

▪ CORAL EA

• POWER8

• Dual Mellanox EDR

• NVIDIA Pascal

▪ CORAL (Sierra)
• POWER9

• Dual Mellanox EDR

• NVIDIA Volta
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MVAPICH diversity within LC
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v

g Nodes Cores

Memory 
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TFLOP/s
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(GPUs)

Unclassified Network (OCF)
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Catalyst ASC+M&IC Cray TOSS IB QDR 324 7,776 41,472 149.3

Syrah ASC+M&IC Cray TOSS IB QDR TBD324 5,184 20,736 107.8

Surface ASC+M&IC Cray TOSS IB FDR 162 2,592 41,500 451.9 451.9

Borax ASC+M&IC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

RZTrona ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

Herd M&IC Appro TOSS IB DDR 9 256 1,088 1.6

OCF Totals Systems 12 11,960.4 2,143.9

Classified Network (SCF)

Pinot(TLCC2, SNSI) M&IC Appro TOSS IB QDR TBD162 2,592 10,368 53.9

Sequoia 5 ASC IBM BGQ RHEL/CNK 5D Torus TBD98,304 1,572,864 1,572,864 20132.7

Zin (TLCC2) 217 ASC Appro TOSS IB QDR TBD2,916 46,656 93,312 961.1

Jade+Jadeita 45 ASC Penguin TOSS Omni-Path 2,688 96,768 344,064 3251.4

Mica ASC Penguin TOSS Omni-Path 384 13,824 49,152 464.5

Shark ASC IBM RHEL IB EDR 36 720 11,520 597.6 676.9

Max ASC Appro TOSS IB FDR 324 5,184 82,944 107.8 52.4

Agate ASC Penguin TOSS N/A TBD 48 1,728 6,144 58.1

SCF Totals Systems 8 25,627.1 729.3

Combined Totals 20 37,587.5 2,873.2

PSM

PSM2

Mellanox +

   NVIDIA

Shared Mem

POWER +

   Mellanox +

   NVIDIA

▪ RPM needed for 
each color

▪ Careful to install
correct RPM on
each machine

▪ Static linking: need
to relink app for
each machine (and
use correct one)

▪ Similar problem for 
apps using Spack

▪ Lots of builds and 
difficult to manage
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Building MPI:
A Nightmare of Permutations

▪ Multiple compilers
• GNU, Intel, PGI

• several versions of each

▪ Multiple MPI 
implementations
• MVAPICH, MVAPICH2, 

Open MPI

• 2-3 versions of each

• normal + debug

▪ Multiple system types

MPI

Compilers

x MPI 

Versions

x (Normal + 

Debug)

x Platforms

= Total

Open MPI MVAPICH2

3 3

3 3

2 2

1 4

18 72 !!!
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Compiler and Library Observations

GNU

MVAPICH

GNU

OpenMPI

Intel-MPI Intel

MVAPICH

Intel*

OpenMPI

PGI

OpenMPI

Allreduce

(36ppn)
✅ ❌ ✅ ❌ ❌

MPI_Send

MPI_Recv
✅ ✅

RMA Get ✅ ✅ ❌ ✅ ✅ ✅

RMA Put

(low PPN)
❌ ❌ ✅ ❌ ❌ ❌

RMA Put

(high PPN)
✅ ✅ ❌ ✅ ✅ ✅

Consistent

Put & Get
✅

empty cells are neither good nor bad
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▪ Thread multiple becoming more common

▪ Non-blocking collectives w/ async progress

▪ Network offload where possible
— Collectives
— Tag matching
— Rendezvous handshake

▪ Reduce pt2pt latency (lots of latency bound apps)

HPC apps needs from MPI
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▪ Improve Allreduce algorithms for user-defined datatypes/ops
— Allreduce on compressed data

▪ Improve support for large-bandwidth messages

▪ Support for non-blocking Allreduce and pt-2-pt
— Overlap messages with backprop steps

▪ Higher precision accumulate for low-precision inputs
— e.g., 32-bit Allreduce on 16-bit data

▪ NCCL-like performance from MPI collectives

Deep learning needs from MPI



LLNL-PRES-736917

37

Thanks to MVAPICH and
to the NOWLAB Nutcrackers!




