_—

MPI1 Performance Engineering through the
Integration of MVAPICH and TAU

Allen D. Malony
Department of Computer and Information Science
University of Oregon "/

MVAPICH

Acknowledgement

» Research work presented in this talk Is being done
through a collaboration with Ohio State University:

“SI12-SSI: Collaborative Research: A Software Infrastructure
for MPI Performance Engineering: Integrating MVAPICH and
TAU via the MPI Tools Interface,” D. Panda (Pl, OSU), S.
Shende (PI, UO), A. Malony (co-PI, UO), NSF Software
Infrastructure for Sustained Innovation — S12, 9/2015-8/2019,
Grants: ACI-1450440 and ACI-1450471.

» People who are doing the work are:

OSU:DK Panda, Hari Subramoni
UQO: Sameer Shende, Srinivasan Ramesh, Aurele Maheo, me.

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Outline

» Motivation
¢ How do we understand MPI runtime complexities?
¢ How do we evolve tools for MPI performance tuning?

» Introduction of MPI Tools Interface (MPI-T)
» Quick overview of the TAU Performance System

» Infrastructure for MPI Performance Engineering
¢ Integration of TAU and MVVAPICH using MPI-T
¢ Extension with plug-in and monitoring framework

¥ Case Studies

¢ Demonstrate MPI performance engineering infrastructure
¢ AmberMD, 3DStencil, minlAMR

¥ Conclusion and Future

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Motivation

» MPI libraries are complex software systems
¢ Implement the MPI standard (currently, MPI 3.1)
¢ Run on different network layers and parallel HPC platforms
¢ Many modular components, interacting in complex ways
¢ Multiple tunable parameters (platform and application)
¢ Current and future HPC hardware complicate matters

» MPI performance engineering Is important
¢ Use message benchmarks for platform performance analysis
¢ Application-based MPI performance engineering is harder
¢ Need to evolve our tools
¢ Leverage MPI tools interface (MPI_T)
¢ Deeper Integration of tools within the MPI software stack

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

What about the MPI Profiling Interface?

» With impressive forethought, MPI was originally designed
with support for performance engineering

» MPI Profiling Interface (PMPI)
¢ Llibrary interposition mechanism to observe MPI routines
¢ Tool implements “wrapper” version of MPI routines

¢ Original MPI call is intercepted by the tool version
@ Tool sees both “entry” and “exit”

On entry, tool does whatever it does and then calls “PMPI” interface to
execute the “real” MPI routine with the user-supplied parameters

 On exit, tool does whatever else more and then returns with arguments
and return value from the “real” MPI routine

» PMPI supports performance engineering with respect to:
¢ MPI routines: time spent, # calls, hardware counts, ...
¢ Message communication: time, size, patterns, ...

» Application-level (external) view Is not enough

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

MPI Tools Interface (MPI T)

» Introduced in the MPI 3.0 standard (latest MP1 3.1)

» Defines two types of variable (access semantics):
¢ Performance Variables (PVARS)
¢ Control Variables (CVARS)

»+ PVARS

¢ Variables report static and dynamic information of MPI performance
@ counters, metrics, state, ...

¢ Written by MPI implementation
¢ Read by the tool via MPI_T interface
» CVARS
¢ Properties and configuration settings used to modify MPI behavior
¢ Configuration and dynamic control
¢ Written by the tool via MPI_T interface
» Each MPI implementation defines PVARs and CVARS supported

» These are registered through MPI1_T for tool access

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Benefits of MPI Tools Interface

» PMPI Interface does not provide any opportunity to gain
Insight into MPI library internals, nor any mechanism to enable
re-configuration and control of MPI

» MPI_T provides a window on MPI internals
¢ Standardized approach (versus earlier attempts, PERUSE)
¢ MPI implementations free to decide what Is exported
¢ Tool discovers what MPI exports and decides what to do

‘\ RiCh i qformation Constant MPI object
MPI_T_BIND_NO_OBJECT N/A; applies globally to entire MPI process
- MPI_T_BIND_MPI_COMM MPI| communicators
a - MPI_T_BIND_MPI_DATATYPE MPI datatvpes
¢ Rank-level view "
MPI_T_BIND_MPI_ERRHANDLER | MPI error handlers
NE I MPI_T _BIND_MPI_FILE MPI file handles
‘\ EXposeS Contro MPI_T_BIND_MPI_GROUF MPIl groups
- - MPI_T_BIND_MPI_OF MPI reduction operators
é B I nd I ng IetS PVARS MPI_T_BIND_MPI_REQUEST MPI requests
MPI_T_BIND_MPI_WIN MPI| windows for one-sided communication
and CVARS {0 be MPI_T_BIND_MPI_MESSAGE MPI| message object
MPI_T_BIND_MPI_INFO MPI info object

tied to MPI objects

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 7

Implementations of MPI T

» MPICH

¢ 10 PVARSs (no binding)

¢ /1 CVARS (no binding)
» OpenMPI

¢ 5 PVARs (4 bound to MPI objects)

¢ 1102 CVARs (exporting of MCA parameters, no binding)
> Intel MPI

¢ 0 PVARs

¢ 60 CVARS
» MVAPICH

¢ /3 PVARSs (no binding)

¢ 82 CVARs (no binding) (additional CVARSs being added)
» TAU works with MPICH, Intel MPI, MVAPICH

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

MVAPICH MPI _T

> PVARS
¢ Memory allocation

¢ Collective algorithms

¢ VBUFs

¢ SMP bytes for Eager and Rendezvous
¢ RDMA and IB

¢ Message receive queue

+ CVARS

¢ Collective algorithms: message size, all reduce, bcast, ...
¢ Modes: eager, rendezvous, ...
¢ Garbage collection, RMA, SMP, Nemesis
¢ VBUFs
» Some variables are static and some are dynamic
» Some are variables are set at MPI_Init

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Using MPI_ T

» MPI implementation defines the PVARs and CVARS

» MPI_T specification defines the interface
¢ Semantics
¢ Process and procedures
¢ Parameters and data types
» MPI implementations support the MPI_T interface

» Tools utilize the MPI T interface
¢ MPI_ T PVAR GET INFO
¢ MPI_T CVAR _GET_INFO
¢ Get performance variables, incorporate in measurements, analyze
¢ Set control variables to enable specific MPI operation
» MPI_T iIs a rank-level interface (like other MPI routines)

» MPI_T allows multiple in-flight performance sessions
¢ Different tools can be simultaneously active

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 10

TAU Performance System®

» Performance problem solving framework for HPC
¢ Integrated, scalable, flexible, portable
¢ Target all parallel programming / execution paradigms

Interconnection Network * Inter-node message
communication

*
Node m_ \. Node

physical memory node memory SMP memory

K T LT S R 55& — ~ 0
space

model

view

Context

» Integrated performance toolkit (open source)
¢ Multi-level performance instrumentation
¢ Widely-ported, flexible, and configurable performance measurement
¢ Performance data management and data mining

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 11

TAU Architecture

» TAU Is a parallel performance framework and toolKkit

» Software architecture provides separation of concerns
¢ Instrumentation | Measurement | Analysis

TAU Architecture

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

12

TAU Components

» Instrumentation
¢ Fortran, C, C++, OpenMP, MPI, Python, Java, UPC, Chapel, ...
¢ Source, compiler, library wrapping, binary rewriting
¢ Automatic instrumentation
» Measurement
- Probe-based and sample-based
- Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
- Intranode: Pthreads OpenMP, hybrid, .
- Heterogeneous: GPU, MIC, CUDA, OpenCL OpenACC, .
- Performance data (timing, counters) and metadata
- Parallel profiling and tracing (with Score-P integration)

nalysis

Parallel profile analysis and visualization (ParaProf)
Performance data mining / machine learning (PerfExplorer)
Performance database technology (TAUdDb)

- Empirical autotuning

¥
wwww:p-z-zw-;wo?

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 13

MPI1 Performance Engineering

» Improving the performance of MPI implementations and use
of the MPI library is important and challenging

» How can MPI_T help |

n this goal?

¢ Couple MPI library anc

performance tool software components

¢ Focus on TAU and MVAPICH

> ldentify performance engineering methods
¢ Extended performance measurement and analysis
¢ MPI optimization based on recommendation
¢ Runtime introspection and performance autotuning

¢ Performance monitorin

g across MPI ranks

» Enabling closer software interaction / co-design Is a key goal

» Application-level MPI performance engineering
¢ Evaluate opportunities in different domains

MUG 2017 MPI Performance Engineer

Ing through the Integration of MVAPICH and TAU

15

Infrastructure Design using MPI_ T

e e e e e L L e T

»
ooooooooooooooooooooooooooooooooo

BEACON
PyCOOLR

MUG 2017

MPI Applications

(i

Measurement

MVAPICH

/ Analysis

Autotuning il [

Get

PVARJ

e

Plugins \

Runtime _W |

\ Settings

HPC Environment

(hererogencous, hierachical memory, complex networks, mult/many core)

-\

- Performance
counters

- Topology
information

Mechanisms

W/ Algorithms .
\ - Migration,
/R, ... j

MPI Performance Engineering through the Integration of MVAPICH and TAU

TAU MPI T Measurement

» TAU can make MPI_T measurements across all ranks

\

‘ile Options Windows Help

Name ~

- . TAU application
Memory Footprint (VmRSS) (KB)
Message size for all-gather
Message size for all-reduce
Message size for broadcast
Message size for gather
Peak Memory Usage Resident Set Size (VmHWM) (KB)
[GROUP=MAX_MARKER] Message size for broadcast
[GROUP=MAX_MARKER] Message size for gather
[GROUP=MAX_MARKER] mem_allocated (Current level of allocatec
[GROUP=MAX_MARKER] mem_allocated (Maximum level of memory
[GROUP=MAX_MARKER] mpit_progress_poll {CH3 RDMA progress «
[GROUP=MAX_ MARKER] mv2_coll_allreduce_2Ilvl (Number of times
[GROUP=MAX_MARKER] mv2_coll_alireduce_shm_intra (Number of
[GROUP=MAX_MARKER] mv2_coll_allreduce_shm_rd (Number of tin
[GROUP=MAX_MARKER] mv2_coll_bcast_shmem (Number of times
[GROUP=MAX_MARKER] mv2_ibv_channel_exact_recv_count (Numk
[GROUP=MAX_MARKER] mv2_num_shmem_coll_calls (Number of tin
[GROUP=MAX_MARKER] mv2_rdmafp_exact_recv_count (Number o
[GROUP=MAX_MARKER] mv2_rdmafp_out_of_order_packet_count (
[GROUP=MAX_MARKER] mv2_reg_cache_hits (Number of registrat
[GROUP=MAX_MARKER] mv2_reg_cache_misses (Number of regist
[GROUP=MAX_MARKER] mv2_smp_eager_received (Number of SMF
[GROUP=MAX_MARKER] mv2_smp_eager_sent (Number of SMP byt
[GROUP=MAX_MARKER] mv2_smp_read_progress_poll (CH3 SMP re
[GROUP=MAX_MARKER] mv2_smp_read_progress_poll_success (U
[GROUP=MAX_MARKER] mv2_smp_write_progress_poll (CH3 SMP w
[GROUP=MAX_MARKER] mv2_total_vbuf_memory (Total amount of
[GROUP=MAX_MARKER] mv2_wvbuf_allocate_time (Average time foi
[GROUP=MAX_MARKER] mv2_vbuf_allocated (Number of VBUFs allt
[GROUP=MAX_MARKER] mv2_vbuf_freed (Number of VBUFs freed)
[GROUP=MAX_MARKER] mv2_vbuf_inuse {(Number of VBUFs inuse)
[GROUP=MAX_MARKER] mv2_vbuf_inuse_array (Number of VBUFs i
[GROUP=MAX_MARKER] mv2_vbuf_ max_use (Maximum number of V
[GROUP=MAX_MARKER] mv2_vbuf_max_use_array (Maximum numb:
[GROUP=MAX_MARKER] num_free_calls (Number of MPIT_free call:
[GROUP=MAX_MARKER] num_malloc_calls (Number of MPIT_malloc
[GROUP=MAX_MARKER] num_memalign_calls (Number of MPIT_men
[GROUP=MAX_MARKER] posted_recvq_length (length of the poste
[GROUP=MAX_MARKER] posted_recvq_match_attempts (number ¢
[GROUP=MAX_MARKER] time_failed_matching_postedq (total time
[GROUP=MAX_MARKER] time_matching_unexpectedq (total time <
[GROUP=MAX_MARKER] unexpected_recvq_buffer_size (total buff
[GROUP=MAX_MARKER] unexpected_recvq_length (length of the 1
[GROUP=MAX_MARKER] unexpected_recvqg_match_attempts (num
[GROUP=MIN_MARKER] Message size for all-reduce

MUG 2017

TAU: ParaPraf: Mean Context Events — Default.ppk (on gedzilla)

Total

5,187,810.828
12,778,020,648
570,400
58,867,064
1,496.43
5,191,435.234
8,223,804
149.637
39,163.581
39,163.581
3,303,001.969
2,675.004
2,675.004
10.48
2,674.992
372.814
5,389.996
27,359.951
372.814
14,479.537
3.562
15,433,665.765
20,379,122.18
26,667,654.829
356,569.965
26,667,654.525
39,075.459
0.123

2.171
77,020.583
1.715

0.003

8.418

65.251
91,890.897
97,974.531
119.366
6.916
1,992,098.262
159,308.051
159,310.516
101.901

1.186
50,195.291

g8

NumSamples

24
1,303
20,013
300
0.984
24

0.004
0.047
0.047
0.402

0.125

1.629

2.539
1.629
1.879
0.117
1.094
1.152
1.004

1.004
0.062
0.062
0.051
1.934
0.062
0.008
0.172
0.473
1.996
1.996

0.59
0.695

0.039
0.398
1.984

MaxValue

219,195.453
9,806,616

944

9,806,616
38,307.094
219,248.062
4,953,852
38,307.094
835,489.734
835,489.734
8,223,534.352
1,698.004
1,698.004
106.375
1,697.992
316.027
3,420.996
15,048.816
316.027
9,870.988
34.219
14,471,985.461
18,129,837.477
26,603,456.156
226,482.82
26,603,455.855
635,728

2

42.75
49,644.5
28.039
0.414
49.906
138.637
58,016.719
61,368.258
208.258
10.934
1,263,322.938
100,101.18
100,103.551
2,616.344
2.066
32,140.996
8

MinValue

202,978.5
9,806,616

8

a

0.062
202,978.5

256
38,307.094
835,489.734
835,489.734
8,195,271.551
o977

o977

61.312

Q77

149.215

1,969
6,531.043
149.215
5,554.168
26.566
13,756,999.242
17,253,827.977
26,524,323.113
130,087.145
26,524,322.809
614,686.688
1.926

42.75
30,021.234
26.828

0.414

48.113
137.465
34,054.004
36,798.004
196.48

9.188
728,775.324
59,206.871
59,206.965
2,600.969
2.887
18,459.695

8

¢ Query PVARs at regular intervals (using signal handler)
¢ Analyze using TAU’s ParaProf parallel profiler

MeanValue

216,158.785
9,806,616
28.501
196,223.547
1,520.183
216,309.801
2,055,951
38,307.094
835,489.734
835,489.734
8,209,402.951
1,337.502
1,337.502
83.844
1,337.496
228.874
2,694.998
10,775.611
228.874
7,706.365
30.393
14,110,780.128
17,684,933.146
26,563,889.635
178,284.982
26,563,889.332
625,207.344
1.963

42.75
39,832.867
27.434

0.414

48.979
138.051
46,035.361
49,083.131
202.369

9.947
996,049.131
79,654.025
79,655.258
2,608.656
2.977
25,295.265

B

MP1 Performance Engineering through the Integration of MVAPICH and TAU

Std. Dev.

4,085.753
0.177
21.839
1,104,554.497
7,478.003
4,144.185
2,140,002.131
o

0

[+

14,131.4
360.502
360.502
22.531
360.496
75.115
725.998
3,831.531
75.115
2,125.758
3.826
340,356.783
429,103.764
39,566.521
48,197.838
39,566.523
10,520.656
0.037

0

9,811.633
0.605

0

0.788

0.586
11,981.357
12,285.127
5.889

0.836
267,273.807
20,447.154
20,448,293
7.688

0.09
6,721.212

0

17

Case Study Applications

» AmberMD is a popular molecular dynamics code
¢ Focus on improving the performance of parallel MD engine
¢ Substantial runtime is in MPI communication routines
¢ MPI_Walit dominates In runtime
¢ MPI_Isend and MPI_Irecv dominate In # calls
» 3DStencil Is a simple synthetic stencil application
¢ Performs non-blocking point-to-point communication in a grid
¢ Computes between communication
¢ Look at communication-computation overlap achieved
¢ Large, fixed-size message used
» MINIAMR 1s a Mantevo mini-app for 3D stencil computation
¢ Memory bound application
¢ Significant MP1_Wait for small point-to-point messages (1-2 KB)
¢ Significant MPIl_Allreduce for 8-byte messages (latency sensitive)
¢ Part of a check-summing routine

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 18

Experimental Setup

» EXxperiments with AmberMD
¢ Stampede, a 6400 node Infiniband cluster at TACC

¢ Stampede compute node: two Xeon E5- 2680 8-core “Sandy
Bridge” processors and one first-generation Intel Xeon Phi SE10P
KNC MIC

¢ All our experiments using pure MPI on the Xeon host with 16 MPI
processes on a node (1 per core)
MV2 ENABLE_AFFINITY turned on
A total of 8 nodes (128 processes) used

» Experiments with MinlAMR and 3DStencil
¢ T2 cluster at e Ohio State University
¢ I'2 computer node: two 14-core Intel Xeon E5-2680 v4 processors

¢ All experiments used pure MPI on Intel Xeon hosts with 28 MPI
processes on a node (1 per core)
» MV2 ENABLE_AFFINITY turned on
 3DStencil: 16 nodes (448 processes) used
MIinNtAMR: 8 nodes (224 processes) used

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 19

Hardware Offloading of Collectives

+ MVAPICH2 now supports offloading of MPI_Allreduce
to network hardware using the SHArP protocol

¢ Hardware offloading i1s mainly beneficial to applications
where communication Is sensitive to latency

> Measurement

¢ TAU collects statistics about the average message size
Involved in MPI1_Allreduce operation

¢ TAU collects the time spent within MP1_Allreduce versus
the overall application time

» Analysis and recommendation

¢ If the message size Is below a certain threshold and the
percentage of total runtime spent within MPI_Allreduce is
above a certain threshold, trigger possible recommendation

¢ Set CVAR MPIR_CVAR_ENABLE_SHARP

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Hardware Offloading of Collectives (2)

+» ParaProf recommendation for mintAMR

File Options Help

@ Applicatlons Triall ield Walue
¢ 19 Standard Applications Memory Size 131737728 kB =
v (A Default App Mode Hame gpulb.cluster
3 Default Exp % Machine w86 b3
S 05 Name ILimu
A rafrof; Def.ppk (on haad.ril.cse.chio—state. adu] - o = 25 Relcasc 3 10.0-327.10. 1. el 7. xB6_&63
) . i 05 Version #1 SMF Tue Feb 16 17:03:50 UTC 2016
File Options Windows Help Starting Timestamp 1395229562990814
Matrics TIMI TAU Arct i deloull
Walie: [sxcliisive : nlig -Lag=mvapich? -pdl =Mhomeisrameshilau2ipdloolkil-3, 23 -mpi..,
dhomefsrameshy TAL INSTALLATION Bt adiibMakelile. Lau-. ..
std, Dev. e - AT ‘. Al] 2 ._:::-tl-l_;i?.mldh
Mean | —eee——— 1 - - o] =
Max | '} oF F
Mi | e >
node O | —— 1
node 1 off
node 2 ot
node 3 ——]
node 4
node 5 e o
node § [— e | | FADeow0 nAGATRACE =
node 7 e §] off
node B i 1
node 9
ode 10 =l
ode 11 —— -
vl TR ! off

Yo Ccould see poalential improvemen in performance by conli,..

You could see potential improvement in performance by configuring MVAPICH with —enable-sharp and
enabling MPIR_CVAR_ENABLE_SHARP in MVAPICH version 2.3a and above

» Performance improvement for mintAMR

Run # Processes Execution time
Default 224 648
SHATrP enabled 224 618

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 21

Eager Limit / Freeing Unused Buffers

» MVAPICH uses internal communication buffers (VBUFs) to

temporarily hold messages that are yet to be transferred to the
receiver in point-to-point communications

¢ There are multiple VBU
¢ At runtime, MVAPICH

- pools which vary in size of the VBUF
nerforms a match based on the size of the

message and accordingly selects a VBUF pool to use

¢ VBUFs are used to send

short messages In an Eager manner to

reduce communication latency
¢ Longer messages use the Rendezvous protocol without VBUFs

» Using Eager protocol can result in a greater amount of
memory being used for VBUFs

¢ Could cause other performance problems to arise
» Monitor and control usage of virtual buffers

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

22

Eager Limit / Freeing Unused Buffers (2)

» Use of virtual buffers can offer significant performance
Improvement to applications performing heavy point-to-
point communication, such as stencil based codes

» MVAPICH2 offers a number of PVARs that monitor the
current usage level, availability of free VBUFs In
different VBUF pools, maximum usage levels, and the
number of allocated VBUFs at process-level granularity

» Accordingly, 1t exposes CVARs that modify how
MVAPICH?2 allocates and frees these VBUFs at runtime

» Usage level of VBUF pools can vary with time and
between processes
¢ Unused VBUFs represent wasted memory resource
¢ ldentifying opportunities to free could save memory

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 23

Eager Limit / Freeing Unused Buffers (3)

» PVARs of Interest
¢ mv2_vbuf allocated array
¢ mv2_vbuf max use array
¢ mv2_total vbuf memory

+ CVARS of Interest

¢ MPI
¢ MPI
¢ MPI
¢ MPI

R CVA
R CVA
R CVA

R CVA

R IBA EAGER THRESHOLD
R VBUF TOTAL SIZE
R VBUF_POOL_CONTROL

R VBUF POOL REDUCED VALUE

» Increasing the value of the Eager limit could lead to
Improved overlap between communication and
computation as larger messages are sent eagerly

¢ Overall execution time for the application may reduce

MUG 2017

MP1 Performance Engineering through the Integration of MVAPICH and TAU 24

3DStencil

» Higher Eager threshold on 3DStencil application
¢ Improves computation-communication overlap
¢ Increases VBUF memory Size

All Processes, Excluswe Time per Functlun Grr_:up

90 %

20 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0%

All Processes, Excluswe Tlme per Functlun Group

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0% !

(a) Before Eager threshold tuning

(b) After Eager threshold tuning

Run Number of Processes | Message Size(Bytes) | Communication-Computation Overlap | Eager Threshold | Total VBUF Memory(Bytes)
Default 448 32,768 11.1 MVAPICH2 Default | 1,436,574
Eager 448 32,768 68.7 33,000 2,573,345
TAU runtime tuning 448 32,768 69.7 33,000 1,208,782

MUG 2017

MPI Performance Engineering through the Integration of MVAPICH and TAU 25

AmberMD

+ Consider total VBUF memory usage for AmberMD application
when the Eager threshold is raised

|]]] | 1 []] [|
204 2.0 4
Decrease -
Increase . = 9q
|| ||
| | | | 1
1.5 4 1.y
: ;
- | [] [] [] [] i | a a []
1.0 4 1.0 4
Decrease " =& a =
a a ® Increase - s =
0.3 05 - a a] a
[| a2 a
0.0 0.0 ; ; T T T T
40 o0 80 100 120 140 B 100 120 140 160 180
Time [5] Tima [5)
(a) Increase in total VBUF memory when increasing (b) Decrease in total VBUF memory when freeing
Eager threshold unused VBUFs

» AmberMD demonstrates a behavior where virtual buffers (VBUFs)
from all pools except one remain largely unused

» Freeing unused VBUFs can lead to significant memory savings

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

AmberMD (2)

» Eager threshold is set statically right after MPI_Init
¢ MPIR CVAR IBA EAGER THRESHOLD
» Increasing the Eager threshold from the MVAPICH?2

default value to 64000 Bytes had the effect of reducing
application runtime by 38.5%

» This was achieved at the cost of increasing the total
VBUF memory across all processes by 80%

Run Number of Processes | Eager Threshold | MD Timesteps | Application Runtime(Seconds) | Total VBUF Memory(Bytes)

Default 128 MVAPICH2 Default 4,000 210 695,150

Fager 128 64,000 4,000 129 768,188
TAU runtime autotuning 128 64,000 4,000 129 629511

» Dynamically monitored VBUF usage and freed the
unused ones, while maintaining same runtime

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 217

Enabling Runtime Introspection

» TAU gathers performance data exposed through MPI T
¢ Interrupt Is triggered at regular intervals

¢ In signal handler, the MPI T interface is queried and the
values of all the performance variables exported are stored at
process level granularity

¢ TAU registers internal atomic events for each of these
performance variables, and every time an event Is triggered
(while querying the MPI T interface), the running average,
minimum value, the maximum value and other statistics

» What to do with the data?
¢ Save for offline analysis
¢ Analyze online and take tuning action

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 28

Plugin Architecture for Runtime Autotuning

7 3\

» TAU can be extended MVAPICH

with a plugin that \ \wee cwes -
READ ' AUTOTUNING PLUGIN |
MPI-T
void autotuning_cb {
) /I Perform
TAU_MPI_T MODULE gh

analyzes performance _

» Based on policies, the - i
plugin can make decisions = ———. pr—
about how control the i) il | — 7
runtime software] 7q o

> Generic plugin architecture / e ——
belng developed RECOMMENDATION)

¢ Policy specification e T
)-)— Ap p Iy i n I\/I P I_T for :‘Er_]dTAOUfﬁEPvreonft1:1ifig/l/ }’/Recommendauonsj

MVAPICH tuning l j
» See poster!

}

—

| ! |
\\'_ — ',/

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU

Global Monitoring for Application Control

» Application tuning requires

understanding distributed — =
p e rfo FMmance Receive CVAR Updates

S UO |S bU||d|ng gl()bal Write CVARS through GUI
monitoring framework

& BEACON (Backplane for Event [Pyﬁfmi%a} Subscrbe o PVARS
and Control Notication) from
DOE Argo project

¢ SOS (Scalable Observation System) :
from DOE MONA project Prieesmeeme .

MPIR_CVAR NEMESIS NETMOD 1
- MPIR_CVAR_NEMESIS POLLS BEFORE_YIELD
3 Use BEACON with MPI T e —
MPIR_CVAR NEMESIS SHM READY EAGER MAX SZ 1 |
— MPIR_CVAR_NEMESIS_TCP_HOST_LOOKUP_RETRIES Update
MPIR_CVAR NEMESIS TCP NETWORK IFACE :

¢ Gather PVARs from multiple ranks peecuron oo mresion

MPIR_CVAR_PRINT_ERROR_STACK

MPIR_CVAR_PROCTABLE_PRINT

¢ Set CVARs for multiple ranks A T
i) MPIR_CVAR REDUCE_SHORT MSG SIZE
P PIR R_INT RT
¢ Analyze and visualize (PYCOOLR) i e v
MPIR_CVAR USE BLOCKING
MPIR_CVAR_USE_SHARED MEM

> S e e p OSte r | MPIR_CVAR_ VBUF POOL_CONTROL
- MPIR_CVAR_ VBUF POOL REDUCED VALUE

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 30

Conclusion and Future

» UO and OSU are integrating TAU and MVAPICH using
the MPI T interface defined in the MPI 3.1 standard

» Base functionality is in place
» MVAPICH is being enhanced with PVARs and CVARS

» TAU Is being enhanced with analysis functionality,
online monitoring, and runtime tuning

» Compelling reasons to integrate performance analysis
and optimization across the parallel software stack

» Support for runtime performance awareness and control
IS Important to address dynamic performance variation

» Future complex HPC systems will require this

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 31

More Information

» S. Ramesh, A. Maheo, S. Shende, A. Malony, H.
Subramoni, D. Panda, “MPI Performance Engineering
with the MPI Tool Interface: the Integration of
MVAPICH and TAU,” EuroMPI/USA, September,
2017. Best paper finalist!

» A. Maheo, “Integrate TAU, MVAPICH, and BEACON to
Enable MPI Performance Monitoring,” MUG 2017
poster.

> S. Ramesh, “Integrating MVAPICH and TAU through

the MPI Tools Interface - A Plugin Architecture to
Enable Autotuning and Recommendation Generation,”

MUG 2017 poster.

MUG 2017 MP1 Performance Engineering through the Integration of MVAPICH and TAU 32

