
Integration and Synthesis for Automated Performance Tuning

MPI Performance Engineering through the

Integration of MVAPICH and TAU

Allen D. Malony

Department of Computer and Information Science

University of Oregon

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 2

Acknowledgement

 Research work presented in this talk is being done

through a collaboration with Ohio State University:

“SI2-SSI: Collaborative Research: A Software Infrastructure

for MPI Performance Engineering: Integrating MVAPICH and

TAU via the MPI Tools Interface,” D. Panda (PI, OSU), S.

Shende (PI, UO), A. Malony (co-PI, UO), NSF Software

Infrastructure for Sustained Innovation – SI2, 9/2015-8/2019,

Grants: ACI-1450440 and ACI-1450471.

 People who are doing the work are:

OSU: DK Panda, Hari Subramoni

UO: Sameer Shende, Srinivasan Ramesh, Aurele Maheo, me.

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 3

Outline

 Motivation

 How do we understand MPI runtime complexities?

 How do we evolve tools for MPI performance tuning?

 Introduction of MPI Tools Interface (MPI-T)

 Quick overview of the TAU Performance System

 Infrastructure for MPI Performance Engineering

 Integration of TAU and MVAPICH using MPI-T

 Extension with plug-in and monitoring framework

 Case Studies

 Demonstrate MPI performance engineering infrastructure

 AmberMD, 3DStencil, miniAMR

 Conclusion and Future

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 4

Motivation

 MPI libraries are complex software systems

 Implement the MPI standard (currently, MPI 3.1)

 Run on different network layers and parallel HPC platforms

 Many modular components, interacting in complex ways

 Multiple tunable parameters (platform and application)

 Current and future HPC hardware complicate matters

 MPI performance engineering is important

 Use message benchmarks for platform performance analysis

 Application-based MPI performance engineering is harder

 Need to evolve our tools

 Leverage MPI tools interface (MPI_T)

 Deeper integration of tools within the MPI software stack

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 5

What about the MPI Profiling Interface?

 With impressive forethought, MPI was originally designed
with support for performance engineering

 MPI Profiling Interface (PMPI)

 Library interposition mechanism to observe MPI routines

 Tool implements “wrapper” version of MPI routines

 Original MPI call is intercepted by the tool version

 Tool sees both “entry” and “exit”

 On entry, tool does whatever it does and then calls “PMPI” interface to
execute the “real” MPI routine with the user-supplied parameters

 On exit, tool does whatever else more and then returns with arguments
and return value from the “real” MPI routine

 PMPI supports performance engineering with respect to:

 MPI routines: time spent, # calls, hardware counts, …

 Message communication: time, size, patterns, …

 Application-level (external) view is not enough

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 6

MPI Tools Interface (MPI_T)

 Introduced in the MPI 3.0 standard (latest MPI 3.1)

 Defines two types of variable (access semantics):

 Performance Variables (PVARs)

 Control Variables (CVARs)

 PVARs

 Variables report static and dynamic information of MPI performance

 counters, metrics, state, …

 Written by MPI implementation

 Read by the tool via MPI_T interface

 CVARs

 Properties and configuration settings used to modify MPI behavior

 Configuration and dynamic control

 Written by the tool via MPI_T interface

 Each MPI implementation defines PVARs and CVARS supported

 These are registered through MPI_T for tool access

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 7

Benefits of MPI Tools Interface

 PMPI interface does not provide any opportunity to gain

insight into MPI library internals, nor any mechanism to enable

re-configuration and control of MPI

 MPI_T provides a window on MPI internals

 Standardized approach (versus earlier attempts, PERUSE)

 MPI implementations free to decide what is exported

 Tool discovers what MPI exports and decides what to do

 Rich information

 Rank-level view

 Exposes control

 Binding lets PVARs

and CVARs to be

tied to MPI objects

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 8

Implementations of MPI_T

 MPICH

 10 PVARs (no binding)

 71 CVARs (no binding)

 OpenMPI

 5 PVARs (4 bound to MPI objects)

 1102 CVARs (exporting of MCA parameters, no binding)

 Intel MPI

 0 PVARs

 60 CVARs

 MVAPICH

 73 PVARs (no binding)

 82 CVARs (no binding) (additional CVARs being added)

 TAU works with MPICH, Intel MPI, MVAPICH

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 9

MVAPICH MPI_T

 PVARs

 Memory allocation

 Collective algorithms

 VBUFs

 SMP bytes for Eager and Rendezvous

 RDMA and IB

 Message receive queue

 CVARs

 Collective algorithms: message size, all reduce, bcast, …

 Modes: eager, rendezvous, ...

 Garbage collection, RMA, SMP, Nemesis

 VBUFs

 Some variables are static and some are dynamic

 Some are variables are set at MPI_Init

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 10

Using MPI_T

 MPI implementation defines the PVARs and CVARs

 MPI_T specification defines the interface

 Semantics

 Process and procedures

 Parameters and data types

 MPI implementations support the MPI_T interface

 Tools utilize the MPI_T interface

 MPI_T_PVAR_GET_INFO

 MPI_T_CVAR_GET_INFO

 Get performance variables, incorporate in measurements, analyze

 Set control variables to enable specific MPI operation

 MPI_T is a rank-level interface (like other MPI routines)

 MPI_T allows multiple in-flight performance sessions

 Different tools can be simultaneously active

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 11

TAU Performance System®

 Performance problem solving framework for HPC
 Integrated, scalable, flexible, portable

 Target all parallel programming / execution paradigms

 Integrated performance toolkit (open source)
 Multi-level performance instrumentation

 Widely-ported, flexible, and configurable performance measurement

 Performance data management and data mining

memory memory

Node Node Node

VM

space

Context

SMP

Threads

node memory

…

…

Interconnection Network Inter-node message

communication

*

*

physical

view

model

view

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 12

TAU Architecture

 TAU is a parallel performance framework and toolkit

 Software architecture provides separation of concerns

 Instrumentation | Measurement | Analysis

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 13

TAU Components

 Instrumentation
 Fortran, C, C++, OpenMP, MPI, Python, Java, UPC, Chapel, …

 Source, compiler, library wrapping, binary rewriting

 Automatic instrumentation

 Measurement
 Probe-based and sample-based

 Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP

 Intranode: Pthreads, OpenMP, hybrid, …

 Heterogeneous: GPU, MIC, CUDA, OpenCL, OpenACC, …

 Performance data (timing, counters) and metadata

 Parallel profiling and tracing (with Score-P integration)

 Analysis
 Parallel profile analysis and visualization (ParaProf)

 Performance data mining / machine learning (PerfExplorer)

 Performance database technology (TAUdb)

 Empirical autotuning

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 15

MPI Performance Engineering

 Improving the performance of MPI implementations and use

of the MPI library is important and challenging

 How can MPI_T help in this goal?

 Couple MPI library and performance tool software components

 Focus on TAU and MVAPICH

 Identify performance engineering methods

 Extended performance measurement and analysis

 MPI optimization based on recommendation

 Runtime introspection and performance autotuning

 Performance monitoring across MPI ranks

 Enabling closer software interaction / co-design is a key goal

 Application-level MPI performance engineering

 Evaluate opportunities in different domains

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 16

Infrastructure Design using MPI_T

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 17

TAU MPI_T Measurement

 TAU can make MPI_T measurements across all ranks

 Query PVARs at regular intervals (using signal handler)

 Analyze using TAU’s ParaProf parallel profiler

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 18

Case Study Applications

 AmberMD is a popular molecular dynamics code
 Focus on improving the performance of parallel MD engine

 Substantial runtime is in MPI communication routines

 MPI_Wait dominates in runtime

 MPI_Isend and MPI_Irecv dominate in # calls

 3DStencil is a simple synthetic stencil application
 Performs non-blocking point-to-point communication in a grid

 Computes between communication

 Look at communication-computation overlap achieved

 Large, fixed-size message used

 MiniAMR is a Mantevo mini-app for 3D stencil computation
 Memory bound application

 Significant MPI_Wait for small point-to-point messages (1-2 KB)

 Significant MPI_Allreduce for 8-byte messages (latency sensitive)

 Part of a check-summing routine

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 19

Experimental Setup

 Experiments with AmberMD
 Stampede, a 6400 node Infiniband cluster at TACC

 Stampede compute node: two Xeon E5- 2680 8-core “Sandy
Bridge” processors and one first-generation Intel Xeon Phi SE10P
KNC MIC

 All our experiments using pure MPI on the Xeon host with 16 MPI
processes on a node (1 per core)
 MV2_ENABLE_AFFINITY turned on

 A total of 8 nodes (128 processes) used

 Experiments with MiniAMR and 3DStencil
 ri2 cluster at e Ohio State University

 ri2 computer node: two 14-core Intel Xeon E5-2680 v4 processors

 All experiments used pure MPI on Intel Xeon hosts with 28 MPI
processes on a node (1 per core)
 MV2_ENABLE_AFFINITY turned on

 3DStencil: 16 nodes (448 processes) used

 MiniAMR: 8 nodes (224 processes) used

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 20

Hardware Offloading of Collectives

 MVAPICH2 now supports offloading of MPI_Allreduce
to network hardware using the SHArP protocol

 Hardware offloading is mainly beneficial to applications
where communication is sensitive to latency

 Measurement

 TAU collects statistics about the average message size
involved in MPI_Allreduce operation

 TAU collects the time spent within MPI_Allreduce versus
the overall application time

 Analysis and recommendation

 If the message size is below a certain threshold and the
percentage of total runtime spent within MPI_Allreduce is
above a certain threshold, trigger possible recommendation

 Set CVAR MPIR_CVAR_ENABLE_SHARP

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 21

Hardware Offloading of Collectives (2)

 ParaProf recommendation for miniAMR

 Performance improvement for miniAMR
 Run # Processes Execution time

 Default 224 648

 SHArP enabled 224 618

You could see potential improvement in performance by configuring MVAPICH with –enable-sharp and

enabling MPIR_CVAR_ENABLE_SHARP in MVAPICH version 2.3a and above

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 22

Eager Limit / Freeing Unused Buffers

 MVAPICH uses internal communication buffers (VBUFs) to

temporarily hold messages that are yet to be transferred to the

receiver in point-to-point communications

 There are multiple VBUF pools which vary in size of the VBUF

 At runtime, MVAPICH performs a match based on the size of the

message and accordingly selects a VBUF pool to use

 VBUFs are used to send short messages in an Eager manner to

reduce communication latency

 Longer messages use the Rendezvous protocol without VBUFs

 Using Eager protocol can result in a greater amount of

memory being used for VBUFs

 Could cause other performance problems to arise

 Monitor and control usage of virtual buffers

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 23

Eager Limit / Freeing Unused Buffers (2)

 Use of virtual buffers can offer significant performance
improvement to applications performing heavy point-to-
point communication, such as stencil based codes

 MVAPICH2 offers a number of PVARs that monitor the
current usage level, availability of free VBUFs in
different VBUF pools, maximum usage levels, and the
number of allocated VBUFs at process-level granularity

 Accordingly, it exposes CVARs that modify how
MVAPICH2 allocates and frees these VBUFs at runtime

 Usage level of VBUF pools can vary with time and
between processes

 Unused VBUFs represent wasted memory resource

 Identifying opportunities to free could save memory

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 24

Eager Limit / Freeing Unused Buffers (3)

 PVARs of interest

 mv2_vbuf_allocated_array

 mv2_vbuf_max_use_array

 mv2_total_vbuf_memory

 CVARs of interest

 MPIR_CVAR_IBA_EAGER_THRESHOLD

 MPIR_CVAR_VBUF_TOTAL_SIZE

 MPIR_CVAR_VBUF_POOL_CONTROL

 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE

 Increasing the value of the Eager limit could lead to
improved overlap between communication and
computation as larger messages are sent eagerly

 Overall execution time for the application may reduce

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 25

3DStencil

 Higher Eager threshold on 3DStencil application

 Improves computation-communication overlap

 Increases VBUF memory size
EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA S. Ramesh et al.

(a) Before Eager threshold tuning (b) A er Eager threshold tuning

Figure 4: Vampir[23] summary process timel ine view of 3DStenci l shows increased time in user code a er runtime

optimization of communication

IncreasingtheEager limit may leadtoincreasedmemory usage

insideMPI asVBUFsneedtobeallocatedtoholdlarger messages.

Figure5aisaPYCOOLRscreenshot illustrating this increase in

total VBUFmemory usagefor Amber application when theEager

threshold israised. eX-axisrepresentstimeandtheY-axisrep-

resentsmemory inbyteswith107 asthemultiplier. Eachreddot

represents the instantaneous

mv2_t ot al _vbuf _memor y (in bytes) for oneMPI process. If MPI

processes have the same VBUFmemory usage at any point in

time, then thereddotswouldoverlap. In Figure5a, it isevident

that therearetwoclassesof processes—onewithaVBUFmem-

ory usage of roughly 3 MB (beforeEager tuning), and another

with a VBUFmemory usage level of roughly 6 MB (beforeEa-

ger tuning). eeager threshold is raised by se ing theCVAR

MPI R_CVAR_I BA_EAGER_THRESHOLDstatically,duringMPI _I ni t . Fig-

ure5ashowsthat themv2_t ot al _vbuf _memor y increases to ap-

proximately 12MBfor theprocesseswithalower VBUFmemory

usage,andapproximately 23MBfor theclassof processeswitha

higher VBUFmemory usage.

However, it ispossiblethat other VBUFpoolsmay haveunused

VBUFsthat canbefreedtopartially o set thisincreasedmemory

usageinsideMPI. Inapplicationssuchas3DStencil or Amber where

themessagesizeis xedor inaknownrange,freeingunusedVBUFs

can lead to signi cant memory savings.

isisexactly wheretheuseof aperformancepro ler suchas

TAUiscritical. At runtime,our autotuningpolicy implementedas

a plugin monitors the di erence between

mv2_vbuf _al l ocat ed_ar r ay and mv2_vbuf _max_use_ar r ay,

which representsunusedVBUFsin agiven pool. If thisvalueis

aboveacertain user de nedlimit, theautotuningpolicy setsthe

CVARMPI R_CVAR_VBUF_POOL_CONTROL along with

MPI R_CVAR_VBUF_POOL_REDUCED_VALUE to be equal to the

mv2_vbuf _max_use_ar r ay for agiven pool. Alternatively, these

CVARscan beset at runtimethrough thePYCOOLRGUI aswell —

however, theadvantageof usinganautotuningplugin for thispur-

poseisthat thesevaluescanbeset individually andindependently

for di erent processes, enabling more ne-grained control.

Figure5bdepictsthedecreasein mv2_t ot al _vbuf _memor y for

Amber when only MPI R_CVAR_VBUF_POOL_CONTROL is

enabledthrough thePYCOOLRGUI, instructingMPI tofreeany

unusedVBUFs. eCVARfor pool control isenabledat aroundthe

150secondmark, andat thispoint, theVBUFmemory usagelevels

drop as a result of unused VBUFs being freed.

6.5 Resul ts

6.5.1 Amber. Table1summarizestheresultsof modifyingthe

Eager threshold andapplying theruntimeautotuning policy for

Amber. ethreshold isset statically right a er MPI initialization,

usingMPI R_CVAR_I BA_EAGER_THRESHOLD.Wenotedthat increas-

ingtheEager thresholdfromtheMVAPICH2default valueto64000

Byteshadthee ect of reducingapplication runtimeby38.5%. How-

ever, thiswasachieved at thecost of increasing thetotal VBUF

memory acrossall processesby 80%. ethirdrowshowsresults

of applying theuser de ned policy of freeing unused VBUFsat

runtime, on top of theEager threshold optimization. Wesaw a

drastic reduction in total VBUFmemory usedwhiletheruntime

remained una ected.

6.5.2 3DStencil. Table 2 summarizes the results of these ex-

periments with our synthetic 3DStencil code. Wedesigned the

application insuchaway that non-blockingpoint-to-point com-

municationsinvolvemessagesof anarbitrarily high,but xedsize.

Wemeasuredthecommunication-computation overlapachieved.

e rst rowdescribesresultsfor thedefault run,whereavery low

communication-computation ratioof 11.1%wasachievedasmes-

sagesaresent usingtheRendezvousprotocol. Inamanner similar

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 26

AmberMD

 Consider total VBUF memory usage for AmberMD application
when the Eager threshold is raised

 AmberMD demonstrates a behavior where virtual buffers (VBUFs)
from all pools except one remain largely unused

 Freeing unused VBUFs can lead to significant memory savings

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 27

AmberMD (2)

 Eager threshold is set statically right after MPI_Init

 MPIR_CVAR_IBA_EAGER_THRESHOLD

 Increasing the Eager threshold from the MVAPICH2

default value to 64000 Bytes had the effect of reducing

application runtime by 38.5%

 This was achieved at the cost of increasing the total

VBUF memory across all processes by 80%

 Dynamically monitored VBUF usage and freed the

unused ones, while maintaining same runtime

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 28

Enabling Runtime Introspection

 TAU gathers performance data exposed through MPI T

 Interrupt is triggered at regular intervals

 In signal handler, the MPI T interface is queried and the

values of all the performance variables exported are stored at

process level granularity

 TAU registers internal atomic events for each of these

performance variables, and every time an event is triggered

(while querying the MPI T interface), the running average,

minimum value, the maximum value and other statistics

 What to do with the data?

 Save for offline analysis

 Analyze online and take tuning action

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 29

Plugin Architecture for Runtime Autotuning

 TAU can be extended
with a plugin that
analyzes performance

 Based on policies, the
plugin can make decisions
about how control the
runtime software

 Generic plugin architecture
being developed

 Policy specification

 Apply in MPI_T for
MVAPICH tuning

 See poster!

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 30

Global Monitoring for Application Control

 Application tuning requires
understanding distributed
performance

 UO is building global
monitoring framework

 BEACON (Backplane for Event
and Control Notication) from
DOE Argo project

 SOS (Scalable Observation System)
from DOE MONA project

 Use BEACON with MPI_T

 Gather PVARs from multiple ranks

 Set CVARs for multiple ranks

 Analyze and visualize (PYCOOLR)

 See poster!

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 31

Conclusion and Future

 UO and OSU are integrating TAU and MVAPICH using

the MPI_T interface defined in the MPI 3.1 standard

 Base functionality is in place

 MVAPICH is being enhanced with PVARs and CVARs

 TAU is being enhanced with analysis functionality,

online monitoring, and runtime tuning

 Compelling reasons to integrate performance analysis

and optimization across the parallel software stack

 Support for runtime performance awareness and control

is important to address dynamic performance variation

 Future complex HPC systems will require this

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 32

More Information

 S. Ramesh, A. Maheo, S. Shende, A. Malony, H.

Subramoni, D. Panda, “MPI Performance Engineering

with the MPI Tool Interface: the Integration of

MVAPICH and TAU,” EuroMPI/USA, September,

2017. Best paper finalist!

 A. Maheo, “Integrate TAU, MVAPICH, and BEACON to

Enable MPI Performance Monitoring,” MUG 2017

poster.

 S. Ramesh, “Integrating MVAPICH and TAU through

the MPI Tools Interface - A Plugin Architecture to

Enable Autotuning and Recommendation Generation,”

MUG 2017 poster.

