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Outline 

 Motivation 

 How do we understand MPI runtime complexities? 

 How do we evolve tools for MPI performance tuning? 

 Introduction of MPI Tools Interface (MPI-T) 

 Quick overview of the TAU Performance System 

 Infrastructure for MPI Performance Engineering 

 Integration of TAU and MVAPICH using MPI-T 

 Extension with plug-in and monitoring framework 

 Case Studies 

 Demonstrate MPI performance engineering infrastructure 

 AmberMD, 3DStencil, miniAMR 

 Conclusion and Future 
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Motivation 

 MPI libraries are complex software systems 

 Implement the MPI standard (currently, MPI 3.1) 

 Run on different network layers and parallel HPC platforms 

 Many modular components, interacting in complex ways 

 Multiple tunable parameters (platform and application) 

 Current and future HPC hardware complicate matters 

 MPI performance engineering is important 

 Use message benchmarks for platform performance analysis 

 Application-based MPI performance engineering is harder 

 Need to evolve our tools 

 Leverage MPI tools interface (MPI_T) 

 Deeper integration of tools within the MPI software stack 
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What about the MPI Profiling Interface? 

 With impressive forethought, MPI was originally designed 
with support for performance engineering 

 MPI Profiling Interface (PMPI) 

 Library interposition mechanism to observe MPI routines 

 Tool implements “wrapper” version of MPI routines 

 Original MPI call is intercepted by the tool version 

 Tool sees both “entry” and “exit” 

 On entry, tool does whatever it does and then calls “PMPI” interface to 
execute the “real” MPI routine with the user-supplied parameters 

 On exit, tool does whatever else more and then returns with arguments 
and return value from the “real” MPI routine 

 PMPI supports performance engineering with respect to: 

 MPI routines: time spent, # calls, hardware counts, … 

 Message communication: time, size, patterns, … 

 Application-level (external) view is not enough 
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MPI Tools Interface (MPI_T) 

 Introduced in the MPI 3.0 standard (latest MPI 3.1) 

 Defines two types of variable (access semantics): 

 Performance Variables (PVARs) 

 Control Variables (CVARs) 

 PVARs 

 Variables report static and dynamic information of MPI performance 

 counters, metrics, state, … 

 Written by MPI implementation 

 Read by the tool via MPI_T interface 

 CVARs 

 Properties and configuration settings used to modify MPI behavior 

 Configuration and dynamic control 

 Written by the tool via MPI_T interface 

 Each MPI implementation defines PVARs and CVARS supported 

 These are registered through MPI_T for tool access 
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Benefits of MPI Tools Interface 

 PMPI interface does not provide any opportunity to gain 

insight into MPI library internals, nor any mechanism to enable 

re-configuration and control of MPI 

 MPI_T provides a window on MPI internals 

 Standardized approach (versus earlier attempts, PERUSE) 

 MPI implementations free to decide what is exported 

 Tool discovers what MPI exports and decides what to do 

 Rich information 

 Rank-level view 

 Exposes control 

 Binding lets PVARs 

and CVARs to be 

tied to MPI objects 
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Implementations of MPI_T 

 MPICH 

 10 PVARs (no binding) 

 71 CVARs (no binding) 

 OpenMPI 

 5 PVARs (4 bound to MPI objects) 

 1102 CVARs (exporting of MCA parameters, no binding) 

 Intel MPI 

 0 PVARs 

 60 CVARs 

 MVAPICH 

 73 PVARs (no binding) 

 82 CVARs (no  binding) (additional CVARs being added) 

 TAU works with MPICH, Intel MPI, MVAPICH 
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MVAPICH MPI_T 

 PVARs 

 Memory allocation 

 Collective algorithms 

 VBUFs 

 SMP bytes for Eager and Rendezvous 

 RDMA and IB 

 Message receive queue 

 CVARs 

 Collective algorithms: message size, all reduce, bcast, … 

 Modes: eager, rendezvous, ... 

 Garbage collection, RMA, SMP, Nemesis 

 VBUFs 

 Some variables are static and some are dynamic 

 Some are variables are set at MPI_Init 
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Using MPI_T 

 MPI implementation defines the PVARs and CVARs 

 MPI_T specification defines the interface 

 Semantics 

 Process and procedures 

 Parameters and data types 

 MPI implementations support the MPI_T interface 

 Tools utilize the MPI_T interface 

 MPI_T_PVAR_GET_INFO 

 MPI_T_CVAR_GET_INFO 

 Get performance variables, incorporate in measurements, analyze 

 Set control variables to enable specific MPI operation 

 MPI_T is a rank-level interface (like other MPI routines) 

 MPI_T allows multiple in-flight performance sessions 

 Different tools can be simultaneously active 
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TAU Performance System® 

 Performance problem solving framework for HPC 
 Integrated, scalable, flexible, portable 

 Target all parallel programming / execution paradigms 
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TAU Architecture 

 TAU is a parallel performance framework and toolkit 

 Software architecture provides separation of concerns 

 Instrumentation | Measurement | Analysis 
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TAU Components 

 Instrumentation 
 Fortran, C, C++, OpenMP, MPI, Python, Java, UPC, Chapel, … 

 Source, compiler, library wrapping, binary rewriting 

 Automatic instrumentation 

 Measurement 
 Probe-based and sample-based 

 Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP 

 Intranode: Pthreads, OpenMP, hybrid, … 

 Heterogeneous: GPU, MIC, CUDA, OpenCL, OpenACC, … 

 Performance data (timing, counters) and metadata 

 Parallel profiling and tracing (with Score-P integration) 

 Analysis 
 Parallel profile analysis and visualization (ParaProf) 

 Performance data mining / machine learning (PerfExplorer) 

 Performance database technology (TAUdb) 

 Empirical autotuning 
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MPI Performance Engineering 

 Improving the performance of MPI implementations and use 

of the MPI library is important and challenging 

 How can MPI_T help in this goal? 

 Couple MPI library and performance tool software components 

 Focus on TAU and MVAPICH 

 Identify performance engineering methods 

 Extended performance measurement and analysis 

 MPI optimization based on recommendation 

 Runtime introspection and performance autotuning 

 Performance monitoring across MPI ranks 

 Enabling closer software interaction / co-design is a key goal 

 Application-level MPI performance engineering 

 Evaluate opportunities in different domains 
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Infrastructure Design using MPI_T 
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TAU MPI_T Measurement 

 TAU can make MPI_T measurements across all ranks 

 Query PVARs at regular intervals (using signal handler) 

 Analyze using TAU’s ParaProf parallel profiler 
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Case Study Applications 

 AmberMD is a popular molecular dynamics code 
 Focus on improving the performance of parallel MD engine 

 Substantial runtime is in MPI communication routines 

 MPI_Wait dominates in runtime 

 MPI_Isend and MPI_Irecv dominate in # calls 

 3DStencil is a simple synthetic stencil application 
 Performs non-blocking point-to-point communication in a grid 

 Computes between communication 

 Look at communication-computation overlap achieved 

 Large, fixed-size message used 

 MiniAMR is a Mantevo mini-app for 3D stencil computation 
 Memory bound application 

 Significant MPI_Wait for small point-to-point messages (1-2 KB) 

 Significant MPI_Allreduce for 8-byte messages (latency sensitive) 

 Part of a check-summing routine 
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Experimental Setup 

 Experiments with AmberMD 
 Stampede, a 6400 node Infiniband cluster at TACC 

 Stampede compute node: two Xeon E5- 2680 8-core “Sandy 
Bridge” processors and one first-generation Intel Xeon Phi SE10P 
KNC MIC 

 All our experiments using pure MPI on the Xeon host with 16 MPI 
processes on a node (1 per core) 
 MV2_ENABLE_AFFINITY turned on 

 A total of 8 nodes (128 processes) used 

 Experiments with MiniAMR and 3DStencil 
 ri2 cluster at e Ohio State University 

 ri2 computer node: two 14-core Intel Xeon E5-2680 v4 processors 

 All experiments used pure MPI on Intel Xeon hosts with 28 MPI 
processes on a node (1 per core) 
 MV2_ENABLE_AFFINITY turned on 

 3DStencil: 16 nodes (448 processes) used 

 MiniAMR: 8 nodes (224 processes) used 
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Hardware Offloading of Collectives  

 MVAPICH2 now supports offloading of MPI_Allreduce 
to network hardware using the SHArP protocol 

 Hardware offloading is mainly beneficial to applications 
where communication is sensitive to latency 

 Measurement 

 TAU collects statistics about the average message size 
involved in MPI_Allreduce operation 

 TAU collects the time spent within MPI_Allreduce versus 
the overall application time 

 Analysis and recommendation 

 If the message size is below a certain threshold and the 
percentage of total runtime spent within MPI_Allreduce is 
above a certain threshold, trigger possible recommendation 

 Set CVAR MPIR_CVAR_ENABLE_SHARP 
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Hardware Offloading of Collectives (2)  

 ParaProf recommendation for miniAMR 

 

 

 

 

 

 

 

 

 

 

 Performance improvement for miniAMR 
 Run # Processes Execution time 

 Default 224 648 

 SHArP enabled 224 618 

You could see potential improvement in performance by configuring MVAPICH with –enable-sharp and 

enabling MPIR_CVAR_ENABLE_SHARP in MVAPICH version 2.3a and above 
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Eager Limit / Freeing Unused Buffers 

 MVAPICH uses internal communication buffers (VBUFs) to 

temporarily hold messages that are yet to be transferred to the 

receiver in point-to-point communications 

 There are multiple VBUF pools which vary in size of the VBUF 

 At runtime, MVAPICH performs a match based on the size of the 

message and accordingly selects a VBUF pool to use 

 VBUFs are used to send short messages in an Eager manner to 

reduce communication latency 

 Longer messages use the Rendezvous protocol without VBUFs 

 Using Eager protocol can result in a greater amount of 

memory being used for VBUFs 

 Could cause other performance problems to arise 

 Monitor and control usage of virtual buffers 
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Eager Limit / Freeing Unused Buffers (2) 

 Use of virtual buffers can offer significant performance 
improvement to applications performing heavy point-to-
point communication, such as stencil based codes 

 MVAPICH2 offers a number of PVARs that monitor the 
current usage level, availability of free VBUFs in 
different VBUF pools, maximum usage levels, and the 
number of allocated VBUFs at process-level granularity 

 Accordingly, it exposes CVARs that modify how 
MVAPICH2 allocates and frees these VBUFs at runtime 

 Usage level of VBUF pools can vary with time and 
between processes 

 Unused VBUFs represent wasted memory resource 

 Identifying opportunities to free could save memory 
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Eager Limit / Freeing Unused Buffers (3) 

 PVARs of interest 

 mv2_vbuf_allocated_array 

 mv2_vbuf_max_use_array  

 mv2_total_vbuf_memory  

 CVARs of interest 

 MPIR_CVAR_IBA_EAGER_THRESHOLD 

 MPIR_CVAR_VBUF_TOTAL_SIZE 

 MPIR_CVAR_VBUF_POOL_CONTROL 

 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE  

 Increasing the value of the Eager limit could lead to 
improved overlap between communication and 
computation as larger messages are sent eagerly 

 Overall execution time for the application may reduce 
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3DStencil 

 Higher Eager threshold on 3DStencil application 

 Improves computation-communication overlap 

 Increases VBUF memory size 
EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA S. Ramesh et al.

(a) Before Eager threshold tuning (b) A er Eager threshold tuning

Figure 4: Vampir[23] summary process timel ine view of 3DStenci l shows increased time in user code a er runtime

optimization of communication

IncreasingtheEager limit may leadtoincreasedmemory usage

insideMPI asVBUFsneedtobeallocatedtoholdlarger messages.

Figure5aisaPYCOOLRscreenshot illustrating this increase in

total VBUFmemory usagefor Amber application when theEager

threshold israised. eX-axisrepresentstimeandtheY-axisrep-

resentsmemory inbyteswith107 asthemultiplier. Eachreddot

represents the instantaneous

mv2_t ot al _vbuf _memor y (in bytes) for oneMPI process. If MPI

processes have the same VBUFmemory usage at any point in

time, then thereddotswouldoverlap. In Figure5a, it isevident

that therearetwoclassesof processes—onewithaVBUFmem-

ory usage of roughly 3 MB (beforeEager tuning), and another

with a VBUFmemory usage level of roughly 6 MB (beforeEa-

ger tuning). eeager threshold is raised by se ing theCVAR

MPI R_CVAR_I BA_EAGER_THRESHOLDstatically,duringMPI _I ni t . Fig-

ure5ashowsthat themv2_t ot al _vbuf _memor y increases to ap-

proximately 12MBfor theprocesseswithalower VBUFmemory

usage,andapproximately 23MBfor theclassof processeswitha

higher VBUFmemory usage.

However, it ispossiblethat other VBUFpoolsmay haveunused

VBUFsthat canbefreedtopartially o set thisincreasedmemory

usageinsideMPI. Inapplicationssuchas3DStencil or Amber where

themessagesizeis xedor inaknownrange,freeingunusedVBUFs

can lead to signi cant memory savings.

isisexactly wheretheuseof aperformancepro ler suchas

TAUiscritical. At runtime,our autotuningpolicy implementedas

a plugin monitors the di erence between

mv2_vbuf _al l ocat ed_ar r ay and mv2_vbuf _max_use_ar r ay,

which representsunusedVBUFsin agiven pool. If thisvalueis

aboveacertain user de nedlimit, theautotuningpolicy setsthe

CVARMPI R_CVAR_VBUF_POOL_CONTROL along with

MPI R_CVAR_VBUF_POOL_REDUCED_VALUE to be equal to the

mv2_vbuf _max_use_ar r ay for agiven pool. Alternatively, these

CVARscan beset at runtimethrough thePYCOOLRGUI aswell —

however, theadvantageof usinganautotuningplugin for thispur-

poseisthat thesevaluescanbeset individually andindependently

for di erent processes, enabling more ne-grained control.

Figure5bdepictsthedecreasein mv2_t ot al _vbuf _memor y for

Amber when only MPI R_CVAR_VBUF_POOL_CONTROL is

enabledthrough thePYCOOLRGUI, instructingMPI tofreeany

unusedVBUFs. eCVARfor pool control isenabledat aroundthe

150secondmark, andat thispoint, theVBUFmemory usagelevels

drop as a result of unused VBUFs being freed.

6.5 Resul ts

6.5.1 Amber. Table1summarizestheresultsof modifyingthe

Eager threshold andapplying theruntimeautotuning policy for

Amber. ethreshold isset statically right a er MPI initialization,

usingMPI R_CVAR_I BA_EAGER_THRESHOLD.Wenotedthat increas-

ingtheEager thresholdfromtheMVAPICH2default valueto64000

Byteshadthee ect of reducingapplication runtimeby38.5%. How-

ever, thiswasachieved at thecost of increasing thetotal VBUF

memory acrossall processesby 80%. ethirdrowshowsresults

of applying theuser de ned policy of freeing unused VBUFsat

runtime, on top of theEager threshold optimization. Wesaw a

drastic reduction in total VBUFmemory usedwhiletheruntime

remained una ected.

6.5.2 3DStencil. Table 2 summarizes the results of these ex-

periments with our synthetic 3DStencil code. Wedesigned the

application insuchaway that non-blockingpoint-to-point com-

municationsinvolvemessagesof anarbitrarily high,but xedsize.

Wemeasuredthecommunication-computation overlapachieved.

e rst rowdescribesresultsfor thedefault run,whereavery low

communication-computation ratioof 11.1%wasachievedasmes-

sagesaresent usingtheRendezvousprotocol. Inamanner similar
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AmberMD 

 Consider total VBUF memory usage for AmberMD application 
when the Eager threshold is raised 

 

 

 

 

 

 

 

 

 

 

 

 AmberMD demonstrates a behavior where virtual buffers (VBUFs) 
from all pools except one remain largely unused 

 Freeing unused VBUFs can lead to significant memory savings 
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AmberMD (2) 

 Eager threshold is set statically right after MPI_Init 

 MPIR_CVAR_IBA_EAGER_THRESHOLD 

 Increasing the Eager threshold from the MVAPICH2 

default value to 64000 Bytes had the effect of reducing 

application runtime by 38.5% 

 This was achieved at the cost of increasing the total 

VBUF memory across all processes by 80% 

 

 

 

 Dynamically monitored VBUF usage and freed the 

unused ones, while maintaining same runtime 
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Enabling Runtime Introspection 

 TAU gathers performance data exposed through MPI T 

 Interrupt is triggered at regular intervals 

 In signal handler, the MPI T interface is queried and the 

values of all the performance variables exported are stored at 

process level granularity 

 TAU registers internal atomic events for each of these 

performance variables, and every time an event is triggered 

(while querying the MPI T interface), the running average, 

minimum value, the maximum value and other statistics 

 What to do with the data? 

 Save for offline analysis 

 Analyze online and take tuning action 
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Plugin Architecture for Runtime Autotuning 

 TAU can be extended 
with a plugin that 
analyzes performance 

 Based on policies, the 
plugin can make decisions 
about how control the 
runtime software 

 Generic plugin architecture 
being developed 

 Policy specification 

 Apply in MPI_T for 
MVAPICH tuning 

 See poster! 
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Global Monitoring for Application Control 

 Application tuning requires 
understanding distributed 
performance 

 UO is building global 
monitoring framework 

 BEACON (Backplane for Event 
and Control Notication) from 
DOE Argo project 

 SOS (Scalable Observation System) 
from DOE MONA project 

 Use BEACON with MPI_T 

 Gather PVARs from multiple ranks 

 Set CVARs for multiple ranks 

 Analyze and visualize (PYCOOLR) 

 See poster! 



Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 31 

Conclusion and Future 

 UO and OSU are integrating TAU and MVAPICH using 

the MPI_T interface defined in the MPI 3.1 standard 

 Base functionality is in place 

 MVAPICH is being enhanced with PVARs and CVARs 

 TAU is being enhanced with analysis functionality, 

online monitoring, and runtime tuning 

 Compelling reasons to integrate performance analysis 

and optimization across the parallel software stack 

 Support for runtime performance awareness and control 

is important to address dynamic performance variation 

 Future complex HPC systems will require this 
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More Information 

 S. Ramesh, A. Maheo, S. Shende, A. Malony, H. 

Subramoni, D. Panda, “MPI Performance Engineering 

with the MPI Tool Interface: the Integration of 

MVAPICH and TAU,” EuroMPI/USA, September, 

2017.  Best paper finalist! 

 A. Maheo, “Integrate TAU, MVAPICH, and BEACON to 

Enable MPI Performance Monitoring,” MUG 2017 

poster. 

 S. Ramesh, “Integrating MVAPICH and TAU through 

the MPI Tools Interface - A Plugin Architecture to 

Enable Autotuning and Recommendation Generation,” 

MUG 2017 poster. 

 

 

 

 


