
Integration and Synthesis for Automated Performance Tuning

MPI Performance Engineering through the

Integration of MVAPICH and TAU

Allen D. Malony

Department of Computer and Information Science

University of Oregon

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 2

Acknowledgement

Q Research work presented in this talk is being done

through a collaboration with Ohio State University:

ñSI2-SSI: Collaborative Research: A Software Infrastructure

for MPI Performance Engineering: Integrating MVAPICH and

TAU via the MPI Tools Interface,ò D. Panda (PI, OSU), S.

Shende (PI, UO), A. Malony (co-PI, UO), NSF Software

Infrastructure for Sustained Innovation ï SI2, 9/2015-8/2019,

Grants: ACI-1450440 and ACI-1450471.

Q People who are doing the work are:

OSU: DK Panda, Hari Subramoni

UO: Sameer Shende, Srinivasan Ramesh, Aurele Maheo, me.

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 3

Outline

Q Motivation

M How do we understand MPI runtime complexities?

M How do we evolve tools for MPI performance tuning?

Q Introduction of MPI Tools Interface (MPI-T)

Q Quick overview of the TAU Performance System

Q Infrastructure for MPI Performance Engineering

M Integration of TAU and MVAPICH using MPI-T

M Extension with plug-in and monitoring framework

Q Case Studies

M Demonstrate MPI performance engineering infrastructure

M AmberMD, 3DStencil, miniAMR

Q Conclusion and Future

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 4

Motivation

Q MPI libraries are complex software systems

M Implement the MPI standard (currently, MPI 3.1)

M Run on different network layers and parallel HPC platforms

M Many modular components, interacting in complex ways

M Multiple tunable parameters (platform and application)

M Current and future HPC hardware complicate matters

Q MPI performance engineering is important

M Use message benchmarks for platform performance analysis

M Application-based MPI performance engineering is harder

M Need to evolve our tools

M Leverage MPI tools interface (MPI_T)

M Deeper integration of tools within the MPI software stack

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 5

What about the MPI Profiling Interface?

Q With impressive forethought, MPI was originally designed
with support for performance engineering

Q MPI Profiling Interface (PMPI)

M Library interposition mechanism to observe MPI routines

M Tool implements ñwrapperò version of MPI routines

M Original MPI call is intercepted by the tool version

êTool sees both ñentryò and ñexitò

êOn entry, tool does whatever it does and then calls ñPMPIò interface to
execute the ñrealò MPI routine with the user-supplied parameters

ê On exit, tool does whatever else more and then returns with arguments
and return value from the ñrealò MPI routine

Q PMPI supports performance engineering with respect to:

M MPI routines: time spent, # calls, hardware counts, é

M Message communication: time, size, patterns, é

Q Application-level (external) view is not enough

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 6

MPI Tools Interface (MPI_T)

Q Introduced in the MPI 3.0 standard (latest MPI 3.1)

Q Defines two types of variable (access semantics):

M Performance Variables (PVARs)

M Control Variables (CVARs)

Q PVARs

M Variables report static and dynamic information of MPI performance

ê counters, metrics, state, é

M Written by MPI implementation

M Read by the tool via MPI_T interface

Q CVARs

M Properties and configuration settings used to modify MPI behavior

M Configuration and dynamic control

M Written by the tool via MPI_T interface

Q Each MPI implementation defines PVARs and CVARS supported

Q These are registered through MPI_T for tool access

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 7

Benefits of MPI Tools Interface

Q PMPI interface does not provide any opportunity to gain

insight into MPI library internals, nor any mechanism to enable

re-configuration and control of MPI

Q MPI_T provides a window on MPI internals

M Standardized approach (versus earlier attempts, PERUSE)

M MPI implementations free to decide what is exported

M Tool discovers what MPI exports and decides what to do

M Rich information

M Rank-level view

M Exposes control

M Binding lets PVARs

and CVARs to be

tied to MPI objects

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 8

Implementations of MPI_T

Q MPICH

M 10 PVARs (no binding)

M 71 CVARs (no binding)

Q OpenMPI

M 5 PVARs (4 bound to MPI objects)

M 1102 CVARs (exporting of MCA parameters, no binding)

Q Intel MPI

M 0 PVARs

M 60 CVARs

Q MVAPICH

M 73 PVARs (no binding)

M 82 CVARs (no binding) (additional CVARs being added)

Q TAU works with MPICH, Intel MPI, MVAPICH

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 9

MVAPICH MPI_T

Q PVARs

M Memory allocation

M Collective algorithms

M VBUFs

M SMP bytes for Eager and Rendezvous

M RDMA and IB

M Message receive queue

Q CVARs

M Collective algorithms: message size, all reduce, bcast, é

M Modes: eager, rendezvous, ...

M Garbage collection, RMA, SMP, Nemesis

M VBUFs

Q Some variables are static and some are dynamic

Q Some are variables are set at MPI_Init

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 10

Using MPI_T

Q MPI implementation defines the PVARs and CVARs

Q MPI_T specification defines the interface

M Semantics

M Process and procedures

M Parameters and data types

Q MPI implementations support the MPI_T interface

Q Tools utilize the MPI_T interface

M MPI_T_PVAR_GET_INFO

M MPI_T_CVAR_GET_INFO

M Get performance variables, incorporate in measurements, analyze

M Set control variables to enable specific MPI operation

Q MPI_T is a rank-level interface (like other MPI routines)

Q MPI_T allows multiple in-flight performance sessions

M Different tools can be simultaneously active

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 11

TAU Performance System®

Q Performance problem solving framework for HPC
M Integrated, scalable, flexible, portable

M Target all parallel programming / execution paradigms

Q Integrated performance toolkit (open source)
M Multi -level performance instrumentation

M Widely-ported, flexible, and configurable performance measurement

M Performance data management and data mining

memory memory

Node Node Node

VM

space

Context

SMP

Threads

node memory

é

é

Interconnection Network Inter-node message

communication

*

*

physical

view

model

view

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 12

TAU Architecture

Q TAU is a parallel performance framework and toolkit

Q Software architecture provides separation of concerns

M Instrumentation | Measurement | Analysis

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 13

TAU Components

Q Instrumentation
M Fortran, C, C++, OpenMP, MPI, Python, Java, UPC, Chapel, é

M Source, compiler, library wrapping, binary rewriting

M Automatic instrumentation

Q Measurement
M Probe-based and sample-based

M Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP

M Intranode: Pthreads, OpenMP, hybrid, é

M Heterogeneous: GPU, MIC, CUDA, OpenCL, OpenACC, é

M Performance data (timing, counters) and metadata

M Parallel profiling and tracing (with Score-P integration)

Q Analysis
M Parallel profile analysis and visualization (ParaProf)

M Performance data mining / machine learning (PerfExplorer)

M Performance database technology (TAUdb)

M Empirical autotuning

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 15

MPI Performance Engineering

Q Improving the performance of MPI implementations and use

of the MPI library is important and challenging

Q How can MPI_T help in this goal?

M Couple MPI library and performance tool software components

M Focus on TAU and MVAPICH

Q Identify performance engineering methods

M Extended performance measurement and analysis

M MPI optimization based on recommendation

M Runtime introspection and performance autotuning

M Performance monitoring across MPI ranks

Q Enabling closer software interaction / co-design is a key goal

Q Application-level MPI performance engineering

M Evaluate opportunities in different domains

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 16

Infrastructure Design using MPI_T

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 17

TAU MPI_T Measurement

Q TAU can make MPI_T measurements across all ranks

M Query PVARs at regular intervals (using signal handler)

M Analyze using TAUôs ParaProf parallel profiler

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 18

Case Study Applications

Q AmberMD is a popular molecular dynamics code
M Focus on improving the performance of parallel MD engine

M Substantial runtime is in MPI communication routines

M MPI_Wait dominates in runtime

M MPI_Isend and MPI_Irecv dominate in # calls

Q 3DStencil is a simple synthetic stencil application
M Performs non-blocking point-to-point communication in a grid

M Computes between communication

M Look at communication-computation overlap achieved

M Large, fixed-size message used

Q MiniAMR is a Mantevo mini-app for 3D stencil computation
M Memory bound application

M Significant MPI_Wait for small point-to-point messages (1-2 KB)

M Significant MPI_Allreduce for 8-byte messages (latency sensitive)

M Part of a check-summing routine

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 19

Experimental Setup

Q Experiments with AmberMD
M Stampede, a 6400 node Infiniband cluster at TACC

M Stampede compute node: two Xeon E5- 2680 8-core ñSandy
Bridgeò processors and one first-generation Intel Xeon Phi SE10P
KNC MIC

M All our experiments using pure MPI on the Xeon host with 16 MPI
processes on a node (1 per core)
êMV2_ENABLE_AFFINITY turned on

ê A total of 8 nodes (128 processes) used

Q Experiments with MiniAMR and 3DStencil
M ri2 cluster at e Ohio State University

M ri2 computer node: two 14-core Intel Xeon E5-2680 v4 processors

M All experiments used pure MPI on Intel Xeon hosts with 28 MPI
processes on a node (1 per core)
êMV2_ENABLE_AFFINITY turned on

ê 3DStencil: 16 nodes (448 processes) used

êMiniAMR : 8 nodes (224 processes) used

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 20

Hardware Offloading of Collectives

Q MVAPICH2 now supports offloading of MPI_Allreduce
to network hardware using the SHArP protocol

M Hardware offloading is mainly beneficial to applications
where communication is sensitive to latency

Q Measurement

M TAU collects statistics about the average message size
involved in MPI_Allreduce operation

M TAU collects the time spent within MPI_Allreduce versus
the overall application time

Q Analysis and recommendation

M If the message size is below a certain threshold and the
percentage of total runtime spent within MPI_Allreduce is
above a certain threshold, trigger possible recommendation

M Set CVAR MPIR_CVAR_ENABLE_SHARP

Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 21

Hardware Offloading of Collectives (2)

Q ParaProf recommendation for miniAMR

Q Performance improvement for miniAMR
 Run # Processes Execution time

 Default 224 648

 SHArP enabled 224 618

You could see potential improvement in performance by configuring MVAPICH with ïenable-sharp and

enabling MPIR_CVAR_ENABLE_SHARP in MVAPICH version 2.3a and above

