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Outline 
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Motivation 

 MPI libraries are complex software systems 

 Implement the MPI standard (currently, MPI 3.1) 

 Run on different network layers and parallel HPC platforms 

 Many modular components, interacting in complex ways 

 Multiple tunable parameters (platform and application) 

 Current and future HPC hardware complicate matters 

 MPI performance engineering is important 

 Use message benchmarks for platform performance analysis 

 Application-based MPI performance engineering is harder 

 Need to evolve our tools 

 Leverage MPI tools interface (MPI_T) 

 Deeper integration of tools within the MPI software stack 
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What about the MPI Profiling Interface? 

 With impressive forethought, MPI was originally designed 
with support for performance engineering 

 MPI Profiling Interface (PMPI) 

 Library interposition mechanism to observe MPI routines 

 Tool implements “wrapper” version of MPI routines 

 Original MPI call is intercepted by the tool version 

 Tool sees both “entry” and “exit” 

 On entry, tool does whatever it does and then calls “PMPI” interface to 
execute the “real” MPI routine with the user-supplied parameters 

 On exit, tool does whatever else more and then returns with arguments 
and return value from the “real” MPI routine 

 PMPI supports performance engineering with respect to: 

 MPI routines: time spent, # calls, hardware counts, … 

 Message communication: time, size, patterns, … 

 Application-level (external) view is not enough 
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MPI Tools Interface (MPI_T) 

 Introduced in the MPI 3.0 standard (latest MPI 3.1) 

 Defines two types of variable (access semantics): 

 Performance Variables (PVARs) 

 Control Variables (CVARs) 

 PVARs 

 Variables report static and dynamic information of MPI performance 

 counters, metrics, state, … 

 Written by MPI implementation 

 Read by the tool via MPI_T interface 

 CVARs 

 Properties and configuration settings used to modify MPI behavior 

 Configuration and dynamic control 

 Written by the tool via MPI_T interface 

 Each MPI implementation defines PVARs and CVARS supported 

 These are registered through MPI_T for tool access 

 



Integration and Synthesis for Automated Performance Tuning MUG 2017 MPI Performance Engineering through the Integration of MVAPICH and TAU 7 

Benefits of MPI Tools Interface 

 PMPI interface does not provide any opportunity to gain 

insight into MPI library internals, nor any mechanism to enable 

re-configuration and control of MPI 

 MPI_T provides a window on MPI internals 

 Standardized approach (versus earlier attempts, PERUSE) 

 MPI implementations free to decide what is exported 

 Tool discovers what MPI exports and decides what to do 

 Rich information 

 Rank-level view 

 Exposes control 

 Binding lets PVARs 

and CVARs to be 

tied to MPI objects 
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Implementations of MPI_T 

 MPICH 

 10 PVARs (no binding) 

 71 CVARs (no binding) 

 OpenMPI 

 5 PVARs (4 bound to MPI objects) 

 1102 CVARs (exporting of MCA parameters, no binding) 

 Intel MPI 

 0 PVARs 

 60 CVARs 

 MVAPICH 

 73 PVARs (no binding) 

 82 CVARs (no  binding) (additional CVARs being added) 

 TAU works with MPICH, Intel MPI, MVAPICH 
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MVAPICH MPI_T 

 PVARs 

 Memory allocation 

 Collective algorithms 

 VBUFs 

 SMP bytes for Eager and Rendezvous 

 RDMA and IB 

 Message receive queue 

 CVARs 

 Collective algorithms: message size, all reduce, bcast, … 

 Modes: eager, rendezvous, ... 

 Garbage collection, RMA, SMP, Nemesis 

 VBUFs 

 Some variables are static and some are dynamic 

 Some are variables are set at MPI_Init 
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Using MPI_T 

 MPI implementation defines the PVARs and CVARs 

 MPI_T specification defines the interface 

 Semantics 

 Process and procedures 

 Parameters and data types 

 MPI implementations support the MPI_T interface 

 Tools utilize the MPI_T interface 

 MPI_T_PVAR_GET_INFO 

 MPI_T_CVAR_GET_INFO 

 Get performance variables, incorporate in measurements, analyze 

 Set control variables to enable specific MPI operation 

 MPI_T is a rank-level interface (like other MPI routines) 

 MPI_T allows multiple in-flight performance sessions 

 Different tools can be simultaneously active 
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TAU Performance System® 

 Performance problem solving framework for HPC 
 Integrated, scalable, flexible, portable 

 Target all parallel programming / execution paradigms 
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TAU Architecture 

 TAU is a parallel performance framework and toolkit 

 Software architecture provides separation of concerns 

 Instrumentation | Measurement | Analysis 
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TAU Components 

 Instrumentation 
 Fortran, C, C++, OpenMP, MPI, Python, Java, UPC, Chapel, … 

 Source, compiler, library wrapping, binary rewriting 

 Automatic instrumentation 

 Measurement 
 Probe-based and sample-based 

 Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP 

 Intranode: Pthreads, OpenMP, hybrid, … 

 Heterogeneous: GPU, MIC, CUDA, OpenCL, OpenACC, … 

 Performance data (timing, counters) and metadata 

 Parallel profiling and tracing (with Score-P integration) 

 Analysis 
 Parallel profile analysis and visualization (ParaProf) 

 Performance data mining / machine learning (PerfExplorer) 

 Performance database technology (TAUdb) 

 Empirical autotuning 
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MPI Performance Engineering 

 Improving the performance of MPI implementations and use 

of the MPI library is important and challenging 

 How can MPI_T help in this goal? 

 Couple MPI library and performance tool software components 

 Focus on TAU and MVAPICH 

 Identify performance engineering methods 

 Extended performance measurement and analysis 

 MPI optimization based on recommendation 

 Runtime introspection and performance autotuning 

 Performance monitoring across MPI ranks 

 Enabling closer software interaction / co-design is a key goal 

 Application-level MPI performance engineering 

 Evaluate opportunities in different domains 
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Infrastructure Design using MPI_T 
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TAU MPI_T Measurement 

 TAU can make MPI_T measurements across all ranks 

 Query PVARs at regular intervals (using signal handler) 

 Analyze using TAU’s ParaProf parallel profiler 
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Case Study Applications 

 AmberMD is a popular molecular dynamics code 
 Focus on improving the performance of parallel MD engine 

 Substantial runtime is in MPI communication routines 

 MPI_Wait dominates in runtime 

 MPI_Isend and MPI_Irecv dominate in # calls 

 3DStencil is a simple synthetic stencil application 
 Performs non-blocking point-to-point communication in a grid 

 Computes between communication 

 Look at communication-computation overlap achieved 

 Large, fixed-size message used 

 MiniAMR is a Mantevo mini-app for 3D stencil computation 
 Memory bound application 

 Significant MPI_Wait for small point-to-point messages (1-2 KB) 

 Significant MPI_Allreduce for 8-byte messages (latency sensitive) 

 Part of a check-summing routine 
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Experimental Setup 

 Experiments with AmberMD 
 Stampede, a 6400 node Infiniband cluster at TACC 

 Stampede compute node: two Xeon E5- 2680 8-core “Sandy 
Bridge” processors and one first-generation Intel Xeon Phi SE10P 
KNC MIC 

 All our experiments using pure MPI on the Xeon host with 16 MPI 
processes on a node (1 per core) 
 MV2_ENABLE_AFFINITY turned on 

 A total of 8 nodes (128 processes) used 

 Experiments with MiniAMR and 3DStencil 
 ri2 cluster at e Ohio State University 

 ri2 computer node: two 14-core Intel Xeon E5-2680 v4 processors 

 All experiments used pure MPI on Intel Xeon hosts with 28 MPI 
processes on a node (1 per core) 
 MV2_ENABLE_AFFINITY turned on 

 3DStencil: 16 nodes (448 processes) used 

 MiniAMR: 8 nodes (224 processes) used 
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Hardware Offloading of Collectives  

 MVAPICH2 now supports offloading of MPI_Allreduce 
to network hardware using the SHArP protocol 

 Hardware offloading is mainly beneficial to applications 
where communication is sensitive to latency 

 Measurement 

 TAU collects statistics about the average message size 
involved in MPI_Allreduce operation 

 TAU collects the time spent within MPI_Allreduce versus 
the overall application time 

 Analysis and recommendation 

 If the message size is below a certain threshold and the 
percentage of total runtime spent within MPI_Allreduce is 
above a certain threshold, trigger possible recommendation 

 Set CVAR MPIR_CVAR_ENABLE_SHARP 
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Hardware Offloading of Collectives (2)  

 ParaProf recommendation for miniAMR 

 

 

 

 

 

 

 

 

 

 

 Performance improvement for miniAMR 
 Run # Processes Execution time 

 Default 224 648 

 SHArP enabled 224 618 

You could see potential improvement in performance by configuring MVAPICH with –enable-sharp and 

enabling MPIR_CVAR_ENABLE_SHARP in MVAPICH version 2.3a and above 
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Eager Limit / Freeing Unused Buffers 

 MVAPICH uses internal communication buffers (VBUFs) to 

temporarily hold messages that are yet to be transferred to the 

receiver in point-to-point communications 

 There are multiple VBUF pools which vary in size of the VBUF 

 At runtime, MVAPICH performs a match based on the size of the 

message and accordingly selects a VBUF pool to use 

 VBUFs are used to send short messages in an Eager manner to 

reduce communication latency 

 Longer messages use the Rendezvous protocol without VBUFs 

 Using Eager protocol can result in a greater amount of 

memory being used for VBUFs 

 Could cause other performance problems to arise 

 Monitor and control usage of virtual buffers 
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Eager Limit / Freeing Unused Buffers (2) 

 Use of virtual buffers can offer significant performance 
improvement to applications performing heavy point-to-
point communication, such as stencil based codes 

 MVAPICH2 offers a number of PVARs that monitor the 
current usage level, availability of free VBUFs in 
different VBUF pools, maximum usage levels, and the 
number of allocated VBUFs at process-level granularity 

 Accordingly, it exposes CVARs that modify how 
MVAPICH2 allocates and frees these VBUFs at runtime 

 Usage level of VBUF pools can vary with time and 
between processes 

 Unused VBUFs represent wasted memory resource 

 Identifying opportunities to free could save memory 
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Eager Limit / Freeing Unused Buffers (3) 

 PVARs of interest 

 mv2_vbuf_allocated_array 

 mv2_vbuf_max_use_array  

 mv2_total_vbuf_memory  

 CVARs of interest 

 MPIR_CVAR_IBA_EAGER_THRESHOLD 

 MPIR_CVAR_VBUF_TOTAL_SIZE 

 MPIR_CVAR_VBUF_POOL_CONTROL 

 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE  

 Increasing the value of the Eager limit could lead to 
improved overlap between communication and 
computation as larger messages are sent eagerly 

 Overall execution time for the application may reduce 
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3DStencil 

 Higher Eager threshold on 3DStencil application 

 Improves computation-communication overlap 

 Increases VBUF memory size 
EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA S. Ramesh et al.

(a) Before Eager threshold tuning (b) A er Eager threshold tuning

Figure 4: Vampir[23] summary process timel ine view of 3DStenci l shows increased time in user code a er runtime

optimization of communication

IncreasingtheEager limit may leadtoincreasedmemory usage

insideMPI asVBUFsneedtobeallocatedtoholdlarger messages.

Figure5aisaPYCOOLRscreenshot illustrating this increase in

total VBUFmemory usagefor Amber application when theEager

threshold israised. eX-axisrepresentstimeandtheY-axisrep-

resentsmemory inbyteswith107 asthemultiplier. Eachreddot

represents the instantaneous

mv2_t ot al _vbuf _memor y (in bytes) for oneMPI process. If MPI

processes have the same VBUFmemory usage at any point in

time, then thereddotswouldoverlap. In Figure5a, it isevident

that therearetwoclassesof processes—onewithaVBUFmem-

ory usage of roughly 3 MB (beforeEager tuning), and another

with a VBUFmemory usage level of roughly 6 MB (beforeEa-

ger tuning). eeager threshold is raised by se ing theCVAR

MPI R_CVAR_I BA_EAGER_THRESHOLDstatically,duringMPI _I ni t . Fig-

ure5ashowsthat themv2_t ot al _vbuf _memor y increases to ap-

proximately 12MBfor theprocesseswithalower VBUFmemory

usage,andapproximately 23MBfor theclassof processeswitha

higher VBUFmemory usage.

However, it ispossiblethat other VBUFpoolsmay haveunused

VBUFsthat canbefreedtopartially o set thisincreasedmemory

usageinsideMPI. Inapplicationssuchas3DStencil or Amber where

themessagesizeis xedor inaknownrange,freeingunusedVBUFs

can lead to signi cant memory savings.

isisexactly wheretheuseof aperformancepro ler suchas

TAUiscritical. At runtime,our autotuningpolicy implementedas

a plugin monitors the di erence between

mv2_vbuf _al l ocat ed_ar r ay and mv2_vbuf _max_use_ar r ay,

which representsunusedVBUFsin agiven pool. If thisvalueis

aboveacertain user de nedlimit, theautotuningpolicy setsthe

CVARMPI R_CVAR_VBUF_POOL_CONTROL along with

MPI R_CVAR_VBUF_POOL_REDUCED_VALUE to be equal to the

mv2_vbuf _max_use_ar r ay for agiven pool. Alternatively, these

CVARscan beset at runtimethrough thePYCOOLRGUI aswell —

however, theadvantageof usinganautotuningplugin for thispur-

poseisthat thesevaluescanbeset individually andindependently

for di erent processes, enabling more ne-grained control.

Figure5bdepictsthedecreasein mv2_t ot al _vbuf _memor y for

Amber when only MPI R_CVAR_VBUF_POOL_CONTROL is

enabledthrough thePYCOOLRGUI, instructingMPI tofreeany

unusedVBUFs. eCVARfor pool control isenabledat aroundthe

150secondmark, andat thispoint, theVBUFmemory usagelevels

drop as a result of unused VBUFs being freed.

6.5 Resul ts

6.5.1 Amber. Table1summarizestheresultsof modifyingthe

Eager threshold andapplying theruntimeautotuning policy for

Amber. ethreshold isset statically right a er MPI initialization,

usingMPI R_CVAR_I BA_EAGER_THRESHOLD.Wenotedthat increas-

ingtheEager thresholdfromtheMVAPICH2default valueto64000

Byteshadthee ect of reducingapplication runtimeby38.5%. How-

ever, thiswasachieved at thecost of increasing thetotal VBUF

memory acrossall processesby 80%. ethirdrowshowsresults

of applying theuser de ned policy of freeing unused VBUFsat

runtime, on top of theEager threshold optimization. Wesaw a

drastic reduction in total VBUFmemory usedwhiletheruntime

remained una ected.

6.5.2 3DStencil. Table 2 summarizes the results of these ex-

periments with our synthetic 3DStencil code. Wedesigned the

application insuchaway that non-blockingpoint-to-point com-

municationsinvolvemessagesof anarbitrarily high,but xedsize.

Wemeasuredthecommunication-computation overlapachieved.

e rst rowdescribesresultsfor thedefault run,whereavery low

communication-computation ratioof 11.1%wasachievedasmes-

sagesaresent usingtheRendezvousprotocol. Inamanner similar
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AmberMD 

 Consider total VBUF memory usage for AmberMD application 
when the Eager threshold is raised 

 

 

 

 

 

 

 

 

 

 

 

 AmberMD demonstrates a behavior where virtual buffers (VBUFs) 
from all pools except one remain largely unused 

 Freeing unused VBUFs can lead to significant memory savings 
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AmberMD (2) 

 Eager threshold is set statically right after MPI_Init 

 MPIR_CVAR_IBA_EAGER_THRESHOLD 

 Increasing the Eager threshold from the MVAPICH2 

default value to 64000 Bytes had the effect of reducing 

application runtime by 38.5% 

 This was achieved at the cost of increasing the total 

VBUF memory across all processes by 80% 

 

 

 

 Dynamically monitored VBUF usage and freed the 

unused ones, while maintaining same runtime 
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Enabling Runtime Introspection 

 TAU gathers performance data exposed through MPI T 

 Interrupt is triggered at regular intervals 

 In signal handler, the MPI T interface is queried and the 

values of all the performance variables exported are stored at 

process level granularity 

 TAU registers internal atomic events for each of these 

performance variables, and every time an event is triggered 

(while querying the MPI T interface), the running average, 

minimum value, the maximum value and other statistics 

 What to do with the data? 

 Save for offline analysis 

 Analyze online and take tuning action 
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Plugin Architecture for Runtime Autotuning 

 TAU can be extended 
with a plugin that 
analyzes performance 

 Based on policies, the 
plugin can make decisions 
about how control the 
runtime software 

 Generic plugin architecture 
being developed 

 Policy specification 

 Apply in MPI_T for 
MVAPICH tuning 

 See poster! 
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Global Monitoring for Application Control 

 Application tuning requires 
understanding distributed 
performance 

 UO is building global 
monitoring framework 

 BEACON (Backplane for Event 
and Control Notication) from 
DOE Argo project 

 SOS (Scalable Observation System) 
from DOE MONA project 

 Use BEACON with MPI_T 

 Gather PVARs from multiple ranks 

 Set CVARs for multiple ranks 

 Analyze and visualize (PYCOOLR) 

 See poster! 
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Conclusion and Future 

 UO and OSU are integrating TAU and MVAPICH using 

the MPI_T interface defined in the MPI 3.1 standard 

 Base functionality is in place 

 MVAPICH is being enhanced with PVARs and CVARs 

 TAU is being enhanced with analysis functionality, 

online monitoring, and runtime tuning 

 Compelling reasons to integrate performance analysis 

and optimization across the parallel software stack 

 Support for runtime performance awareness and control 

is important to address dynamic performance variation 

 Future complex HPC systems will require this 
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More Information 

 S. Ramesh, A. Maheo, S. Shende, A. Malony, H. 

Subramoni, D. Panda, “MPI Performance Engineering 

with the MPI Tool Interface: the Integration of 

MVAPICH and TAU,” EuroMPI/USA, September, 

2017.  Best paper finalist! 

 A. Maheo, “Integrate TAU, MVAPICH, and BEACON to 

Enable MPI Performance Monitoring,” MUG 2017 

poster. 

 S. Ramesh, “Integrating MVAPICH and TAU through 

the MPI Tools Interface - A Plugin Architecture to 

Enable Autotuning and Recommendation Generation,” 

MUG 2017 poster. 

 

 

 

 


