Intel® Omni-Path Tutorial

Ravindra Babu Ganapathi
Product Owner/ Technical Lead Omni Path Libraries

Sayantan Sur
Senior Software Engineer
Legal Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life-saving, life-sustaining, critical control or safety systems, or in nuclear facility applications.

Intel products may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel may make changes to dates, specifications, product descriptions, and plans referenced in this document at any time, without notice.

This document may contain information on products in the design phase of development. The information herein is subject to change without notice. Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel Corporation or its subsidiaries in the United States and other countries may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Wireless connectivity and some features may require you to purchase additional software, services or external hardware.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations

Intel, the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Other names and brands may be claimed as the property of others.

Copyright © 2017 Intel Corporation. All rights reserved.
What’s new with Intel® Omni-Path Architecture
Intel® OPA Hitting Its Stride in 100G HPC Fabrics

Top500 listings continue to grow
- 4 Top 15 systems, 13 Top 100 systems
- 36% more systems from Nov 2016 list
- First Skylake systems
- And almost 10% of Top500 Rmax performance

New deployments all over the globe
- All geos, and new deployments in HPC Cloud and AI

Expanding capabilities
- NVMe over Fabric, Multi-modal Data Acceleration (MDA), and robust support for heterogeneous clusters

Source: Top500.org
Intel® OPA in the HPC Cloud Today

Rescale

Penguin

http://insidehpc.com/2017/03/penguin-computing-adds-omni-path-lustre-hpc-cloud/

Cloud providers deploying Intel® Omni-Path in single tenant, non virtualized HPC cloud environments
Next Up for Intel® OPA: Artificial Intelligence

Intel offers a complete AI Portfolio

- From CPUs to software to computer vision to libraries and tools

Intel® OPA advantages: Breakthrough performance on scale-out apps

- Low latency
- High bandwidth
- High message rate
- GPU Direct RDMA support
- Xeon Phi Integration

World-class interconnect solution for shorter time to train
NVMe* over OPA: Ready for Prime Time

OPA + Intel® Optane™ Technology
- High Endurance
- Low latency
- High Efficiency
- Total NVMe over Fabric Solution!

NVMe-over-OPA status
- Supported in 10.4.1 release
- Compliant with NVMeF specs 1.0

Only Intel is delivering a total NVMe over Fabric solution!

Target and Host system configuration: 2 x Intel® Xeon® CPU E5-2699 v3 @ 2.30Ghz, Intel® Server Board S2600WT, 128GB DDR4, CentOS 7.3.1611, kernel 4.10.12, IFS 10.4.1, NULL-BLK; FIO 2.19 options hfi1 krcvqs=8 sge_copy_mode=2 wss_threshold=70

*Other names and brands may be claimed as the property of others.
Intel® Omni-Path Maximizing Support for Heterogeneous Clusters

Greater flexibility for creating compute islands depending on user requirements
Multi-Modal Data Acceleration (MDA): Optimizing Data Movement through the Fabric

- **VERBS**: Storage traffic
 - (Large data packets, bandwidth sensitive)

- **MPI**: HPC app traffic
 - (Small / Med data packets, latency, bandwidth sensitive)

- **Accelerated RDMA**: Performance enhancements for large message read or writes

- **Multi-Modal Data Acceleration**: Automatically chooses the most efficient data transfer path

Applications

- **Intel® Omni-Path PSM2**
- **I/O Focused Upper Layer Protocols (ULPs)**
 - Intel® MPI
 - Open MPI
 - MVAPICH2
 - IBM Spectrum & Platform MPI
 - SHMEM

Host Fabric Interface (HFI)

Intel® Omni-Path Wire Transport

Intel® Omni-Path Enhanced Switching Fabric

Verbs Provider / Driver

- **Intel® Omni-Path**: Performance enhancements for large message read or writes
- **Perf Scaled Messaging 2 (PSM2)**: Efficient support for MPI, 1/10 the code path, high b/w and message rate, consistent latency independent of cluster scale
PSM2 Enhancements
Intel® Omni-Path Architecture

HPC Design Focus Architected for Your MPI Application

- I/O Focused Upper Layer Protocols (ULPs)
- Verbs Provider and Driver
- Intel® Omni-Path PSM2
- Intel® Omni-Path Host Fabric Interface (HFI)
- Intel® Omni-Path Wire Transport

Libfabric

Emerging OpenFabrics Interface (OFI) enabled HPC middleware
PSM2 – Performance Scaled Messaging 2

- PSM2 API is a low level high performing communication interface
- Semantics matches with that of compute middleware such as MPI and/or OFI
 - PSM2 EP maps to HW context, Each EP associated with matched queue
- API's are optimized for both latency and bandwidth
 - PIO/Eager for small message latency
 - DMA/Expected for optimal Bandwidth with large message size
- Intel MPI, Open MPI and MVAPICH2 use PSM2 transport for Omni-Path Fabric
PSM2 Multi Endpoint

User App Threads (Independent of PSM threads)

MPI Threads: EP and MQ creation are not thread safe, One EP/thread

Single Thread per EP

PSM EP

MPI Rank

OFI Scalable EP

User App Threads

Independent of PSM threads

PSM2 Multi Endpoint

MPI Threads: EP and MQ creation are not thread safe, One EP/thread

Single Thread per EP

PSM EP

MPI Rank

OFI Scalable EP

User App Threads (Independent of PSM threads)

PSM2 Multi Endpoint

MPI Threads: EP and MQ creation are not thread safe, One EP/thread

Single Thread per EP

PSM EP

MPI Rank

OFI Scalable EP

User App Threads (Independent of PSM threads)

PSM2 Multi Endpoint

MPI Threads: EP and MQ creation are not thread safe, One EP/thread

Single Thread per EP

PSM EP

MPI Rank

OFI Scalable EP

User App Threads (Independent of PSM threads)
PSM2 Multiple Endpoint

• OFI PSM2 provider now supports Scalable Endpoints
• Single process opening and concurrently using PSM2 Endpoints
• Endpoints are directly mapped to hardware context giving full parallelism
• Enables hybrid programming models such as MPI + OpenMP
 • Performance is scaling similar to multiple MPI processes
 • One MPI process with multiple threads can saturate multiple HFI
• Multiple threads using a single endpoint not supported
 • Higher level software expected to use locks
Inter and Intra-Node GPUDirect

GPUDirect RDMA v3 Support
- GPUDirect RDMA support
- Optimized Transfer through Host Buffer

GPUDirect P2P Intra-Node Support
- Ranks/processes within the same node
- Both single- and multi-GPU support
- Direct GPU to GPU acceleration
Intel® Omni-Path Architecture - Intel® Xeon® CPU E5-2697 v3
NVIDIA* Corporation GK110BGL [Tesla K40c]*

GPU Buffer Transfer Latency & Bandwidth - Ohio State MicroBenchmarks v5.3.2

Latency

![Graph showing latency](image1)

- osu_latency -d cuda D D
- PSM2_GPUDIRECT_RECV_THRESH
 - Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the GPUDirect* RDMA feature will not be used on the receive side of a connection.
 - Default: PSM2_GPUDIRECT_RECV_THRESH=0 (specified in bytes)

Uni-dir Bandwidth

![Graph showing uni-dir bandwidth](image2)

- osu_bw -d cuda D D
- PSM2_GPUDIRECT_SEND_THRESH
 - Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the GPUDirect* RDMA feature will not be used on the send side of a connection.
 - Default: PSM2_GPUDIRECT_SEND_THRESH=30000 (specified in bytes)

Bi-dir Bandwidth

![Graph showing bi-dir bandwidth](image3)

- osu_bibw -d cuda D D
- ~10GB/s
- ~17.5GB/s

Performance Tests

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

Other names and brands may be claimed as the property of others.

Example run command:

```
mpirun -np 2 --map-by ppr:1:node -host host1,host2 -x PSM2_CUDA=1 -x PSM2_GPUDIRECT=1 -x HFI_UNIT=1 --allow-run-as-root taskset -c 14 ./osu_latency -d cuda D D
```
GPU Buffer Transfer Latency & Bandwidth - Ohio State MicroBenchmarks v5.3.2
Intel® Omni-Path Architecture - Intel® Xeon® CPU E5-2697 v3
NVIDIA* Corporation GK110BGL [Tesla K40c]*

GPUDirect* works best when both the GPU and HFI are in the same PCIe* root complex. Two environment variables are designed to improve performance:

PSM2_GPUDIRECT_RECV_THRESH
Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the GPUDirect* RDMA feature will not be used on the receive side of a connection.
Default: PSM2_GPUDIRECT_RECV_THRESH=0 (specified in bytes)

PSM2_GPUDIRECT_SEND_THRESH
Allows you to specify a threshold value (in bytes). If the threshold is exceeded, the GPUDirect* RDMA feature will not be used on the send side of a connection.
Default: PSM2_GPUDIRECT_SEND_THRESH=30000 (specified in bytes)

Example run command:
```
mpirun -np 2 --map-by ppr:1:node -host host1,host2 -x PSM2_CUDA=1 -x PSM2_GPUDIRECT=1 -x HFI_UNIT=0 -x PSM2_GPUDIRECT_RECV_THRESH=8192 --allow-run-as-root taskset -c 14 ./bw_d cuda D
```

GPU and HFI on same CPU socket
GPU and HFI on different CPU sockets
GPU and HFI on different CPU sockets with PSM2_GPUDIRECT_RECV_THRESH=8192 (bytes)

Intel® Xeon® processor E5-2697 v3, Red Hat Enterprise Linux Server release 7.2 (Maipo), 3.10.0-327.el7.x86_64. 3D controller: NVIDIA Corporation GK110BGL [Tesla K40c] OSU Microbenchmarks version 5.3.2 Open MPI 1.10.4-cuda-hfi as packaged with IFS 10.5.0.0.119. GPU device connected to second socket. Benchmark processes pinned to second socket. Dual socket servers connected back to back with no switch hop. Intel® Turbo Boost Technology enabled, Intel® Hyper-Threading Technology enabled.

Last updated: June 29, 2017
PSM2 Multi-Rail and Device Selection Enhancements

• PSM2 env variables for optimal app performance
 • PSM2 MULTIRAIL: Takes the value 0 to 2
 • Value 0: multi-rail turned off
 • Value 1: multi-rail across all the HFI within the node
 • Value 2: multi-rail within a NUMA domain (root complex)
 • PSM2 MULTIRAIL MAP
 • unit:port, unit:port, unit:port...
 • HFI SELECTION ALG
 • “Round Robin”
 • “Packed”
NUMA CONFIGURATION: FOUR DEVICES PER NODE

Dual-socket Intel® Xeon CPU E5-2699 v4 (commonly labeled Broadwell cores), frequency of 2.2 GHz for all the cores. Intel® Hyper-threading technology turned on. Each system has 4 Intel® OPA in each of the 4 x16 PCIe slots and Intel® QuickPath Interconnect (QPI) link connection between the sockets. Two such servers are connected over a switch fabric using Omni-Path Edge switch.
Platform Impact: OSU Latency, Local vs Remote HFI

Dual-socket Intel® Xeon CPU E5-2699 v4 (commonly labeled Broadwell cores), frequency of 2.2 GHz for all the cores. Intel® Hyper-threading technology turned on. Each system has 4 Intel® OPA in each of the 4 x16 PCIe slots and Intel® QuickPath Interconnect (QPI) link connection between the sockets. Two such servers are connected over a switch fabric using Omni-Path Edge switch.
Accelerated RDMA
INTEL® OMNI-PATH ARCHITECTURE (INTEL® OPA)

RDMA BANDWIDTH PERFORMANCE - ACCELERATED RDMA

Up to 40% lower CPU utilization with Accelerated RDMA enabled
Supporting high bandwidth across message sizes

Intel® Xeon® processor E5-2677a v4, Intel® Turbo Boost Technology enabled, Intel® Hyper-Threading Technology disabled; Memory: 2133 MHz DDR4 per node; 3.10.0-327.36.3.e17.x86_64, RHEL 7.2; Intel® OPA: ib_write_bw version 5.33. Average bandwidth is reported. Server side command: ib_write_bw -a (or -s Size) -F -R. Client side command: ib_write_bw -a (or -s Size) -F-R <server IPoIB address>. Intel® OPA HFI - Intel Corporation Device 24f0 – Series 100 HFI ASIC. OPA Switch: Series 100 Edge Switch – 48 port. IFS 10.3.1.0.22. Contents of /etc/modprobe.d/hfi1.conf: options hfi1 cap_mask=0x4c09a01cbba eager_buffer_size=8388608 krecv=4 polic_caps=0x51 max_mtu=15040. 1. CPU statistics measured from /proc/stat immediately before and after the benchmark. Total CPU % is calculated as (user + system) / (user + system + idle) for all cores. At 1 GB message size, ib_read_bw client: 6.24% CPU Acc. RDMA disabled, 3.70% CPU Acc. RDMA enabled. ib_write_bw server: 6.23% CPU Acc. RDMA disabled, 3.70% CPU Acc. RDMA enabled

Last Update: March 10 2017
SKL Performance
INTEL® QUICKPATH INTERCONNECT VS ULTRAPATH INTERCONNECT

- Previous generation Intel® Xeon® processors were interconnected with the Intel® QuickPath Interconnect (QPI)
- Intel® Xeon® Scalable Family processors (codename Skylake) are now connected with the Intel® UltraPath Interconnect

Example: Local MPI processes on dual socket servers (no QPI or UPI involvement):

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
INTEL® QUICKPATH INTERCONNECT VS ULTRAPATH INTERCONNECT

For systems with one Intel® OPA adapter installed on a single socket, any data communication involving cores on the other socket need to traverse the QPI/UPi.

Example: Remote MPI processes on dual socket servers:

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
Benefits of the UPI vs QPI for processes on the remote socket:

<table>
<thead>
<tr>
<th></th>
<th>Intel® Xeon® E5-2697A v4 CPU¹ QPI</th>
<th>Intel® Xeon® Platinum 8170 CPU² UPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI Latency using local socket</td>
<td>1.13 µsec</td>
<td>1.10 µsec</td>
</tr>
<tr>
<td>MPI Latency using remote socket</td>
<td>1.38 µsec</td>
<td>1.26 µsec</td>
</tr>
<tr>
<td>Difference is the intra-socket latency (x2 servers)</td>
<td>0.25 µsec</td>
<td>0.16 µsec</td>
</tr>
</tbody>
</table>

*CPU frequency fixed to 2.1 GHz for both processors

See configuration item #2

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
MPI COLLECTIVE PERFORMANCE - OHIO STATE MICROBENCHMARKS

MPI PROCESS LOCAL TO HFI

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>8 B</th>
<th>16 KB</th>
<th>1 MB</th>
<th>% Time relative to Intel® Xeon® E5-2697a V4 (Lower is Better)</th>
</tr>
</thead>
<tbody>
<tr>
<td>osu_barrier</td>
<td>▼8%</td>
<td>▼3%</td>
<td>▼9%</td>
<td></td>
</tr>
<tr>
<td>osu_bcast</td>
<td>▼1%</td>
<td>▼4%</td>
<td>▼8%</td>
<td></td>
</tr>
<tr>
<td>osu_allgather</td>
<td>▼1%</td>
<td>▼2%</td>
<td>▼27%</td>
<td></td>
</tr>
<tr>
<td>osu_allreduce</td>
<td>▼2%</td>
<td>▼4%</td>
<td>▼8%</td>
<td></td>
</tr>
<tr>
<td>osu_alltoall</td>
<td>▼2%</td>
<td>▼4%</td>
<td>▼8%</td>
<td></td>
</tr>
</tbody>
</table>

Optimization underway

LATENCY (µsec)

- LOWER is Better

MESSAGE SIZE

- 8 B
- 16 KB
- 1 MB

Intel® Xeon® E5-2697a v4 processor

Intel® Xeon® Platinum 8170 processor

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
MPI COLLECTIVE PERFORMANCE - OHIO STATE MICROBENCHMARKS
MPI PROCESS REMOTE TO HFI

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Message Size</th>
<th>% Time relative to Intel® Xeon® E5-2697a V4 (Lower is Better)</th>
</tr>
</thead>
<tbody>
<tr>
<td>osu_barrier</td>
<td>8 B</td>
<td>▼6%</td>
</tr>
<tr>
<td></td>
<td>16 KB</td>
<td>▼16%</td>
</tr>
<tr>
<td></td>
<td>1 MB</td>
<td>▼22%</td>
</tr>
<tr>
<td>osu_bcast</td>
<td>8 B</td>
<td>▼7%</td>
</tr>
<tr>
<td></td>
<td>16 KB</td>
<td>▼6%</td>
</tr>
<tr>
<td></td>
<td>1 MB</td>
<td>▼21%</td>
</tr>
<tr>
<td>osu_allgather</td>
<td>8 B</td>
<td>▼10%</td>
</tr>
<tr>
<td></td>
<td>16 KB</td>
<td>▼29%</td>
</tr>
<tr>
<td></td>
<td>1 MB</td>
<td>▼29%</td>
</tr>
<tr>
<td>osu_allreduce</td>
<td>8 B</td>
<td>▼7%</td>
</tr>
<tr>
<td></td>
<td>16 KB</td>
<td>▼14%</td>
</tr>
<tr>
<td></td>
<td>1 MB</td>
<td>▼39%</td>
</tr>
<tr>
<td>osu_alltoall</td>
<td>8 B</td>
<td>▼14%</td>
</tr>
<tr>
<td></td>
<td>16 KB</td>
<td>▼37%</td>
</tr>
<tr>
<td></td>
<td>1 MB</td>
<td>▼14%</td>
</tr>
</tbody>
</table>

LOWER is Better

8 B 16 KB 1 MB

Intel® Xeon® E5-2697a v4 processor

Intel® Xeon® Platinum 8170 processor

See configuration item #3

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/Performance. Copyright © 2017, Intel Corporation. *Other names and brands may be claimed as the property of others.
MPI COLLECTIVE PERFORMANCE - OHIO STATE MICROBENCHMARKS

INTEL® QUICKPATH VS ULTRAPATH INTERCONNECT

See configuration item #3

For more detail on Intel® UPI see: https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
OFI over Omni-Path
Libfabric on Intel® OPA

- Libfabric PSM2 provider uses the public PSM2 API
- Semantics matches with that of compute middleware such as MPI
 - PSM2 EP maps to HW context, Each EP associated with matched queue
- Regular Endpoints share a single HW context
- Scalable Endpoints provide independent HW contexts
- PSM2 library uses PIO/Eager for small message and DMA/Expected for Bandwidth for large messages
- Current focus is full OFI functionality
- Performance optimizations are possible to reduce call overheads, and provide better semantic mapping of OFI directly to HFI
Performance is comparable for most messages
 • 6.7% overhead for 64B latency, and 6.1% overhead for 16B bandwidth
 • Optimizations are ongoing

Intel Xeon E5-2697 (Ivy Bridge) 2.6GHz; Intel Omni-Path; RHEL 7.3; libfabric 1.5.0 alpha; IFS 10.5.0.0.115
MPI/OFI Design Principles

Directly map MPI constructs to OFI features as much as possible.
Focus on optimizing communication calls
- Avoid branch, function calls, cache misses, memory allocation

<table>
<thead>
<tr>
<th>MPI</th>
<th>OFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Send, MPI_Recv, etc.</td>
<td>fi_tsend, fi_trecv</td>
</tr>
<tr>
<td>Window</td>
<td>Memory region (fi_mr(3))</td>
</tr>
<tr>
<td>Comm. calls (MPI_Put, MPI_Get, etc...)</td>
<td>fi_write, fi_read, ... (fi_rma(3))</td>
</tr>
<tr>
<td>Atomic comm. calls (MPI_Accumulate, etc...)</td>
<td>fi_atomic, ... (fi_atomic(3))</td>
</tr>
</tbody>
</table>
MPICH-OFI

Open-source implementation based on MPICH

- Uses the new CH4 infrastructure
- Co-designed with MPICH community
- Targets existing and new fabrics via Open Fabrics Interface (OFI)
 - Ethernet/sockets, Intel® Omni-Path, Cray Aries*, IBM BG/Q*, InfiniBand*
- OFI is intended as the default communication interface for future versions MPICH
Improving on MPICH/CH3 Overheads

CH4 significantly reduces MPI instructions

MPICH/CH4:
- 35 instructions with static build
- 85 instructions with dynamic build
- Data collected using GCC v5.2.1on Xeon E5-2697 (Haswell)
MPICH Performance Comparison (KNL + OPA)

Around 20% reduction in latency, gains in bandwidth for small messages

Intel Xeon Phi 7250 (Knights Landing) 1.4GHz; Intel Omni-Path; RHEL 7.3; GCC v5.3.1; OSU Micro-benchmarks 5.3
Thread-split usage model with Intel® MPI Library
OpenMP* example

MPI_Comm split_comm[n];

int main() {
 int i, provided;
 MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
 for (i = 0; i < n; i++)
 MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);
 #pragma omp parallel for num_threads(n)
 for (i = 0; i < n; i++) {
 int j = i;
 MPI_Allreduce(MPI_IN_PLACE, &j, 1, MPI_INT, MPI_SUM, split_comm[i]);
 }
 MPI_Finalize();
}
Early results with Intel® MPI Library prototype utilizing multiple endpoints

Uni-dir BW MT benchmark
omp parallel
{
 Rank #0, thread #i:
 n x Isend(msg, comm #i)
 Waitall(n x sreq)
 Recv(acc, comm #i)
 Rank #1, thread #i:
 n x Irecv(msg, comm #i)
 Waitall(n x rreq)
 Send(acc, comm #i)
 Barrier(comm #i)
 omp barrier
}

Uni-dir BW MT Benchmark (described on the right)
Intel® Omni-Path Architecture, dual-rail - Intel® Xeon® CPU E5-2699 v4 2.2GHz
This feature may be included in future versions of Intel MPI

High concurrency ~multi-rank
~25GB/s
Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright© 2017, Intel Corporation. All rights reserved. Intel, the Intel logo, Atom, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804